Suppr超能文献

评估人工智能模型检测牙周病中牙槽骨丧失的有效性:一项全景X线片研究。

Assessing the Effectiveness of Artificial Intelligence Models for Detecting Alveolar Bone Loss in Periodontal Disease: A Panoramic Radiograph Study.

作者信息

Uzun Saylan Bilge Cansu, Baydar Oğuzhan, Yeşilova Esra, Kurt Bayrakdar Sevda, Bilgir Elif, Bayrakdar İbrahim Şevki, Çelik Özer, Orhan Kaan

机构信息

Department of Periodontology, Faculty of Dentistry, Dokuz Eylul University, İzmir 35220, Turkey.

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ege University, İzmir 35040, Turkey.

出版信息

Diagnostics (Basel). 2023 May 19;13(10):1800. doi: 10.3390/diagnostics13101800.

Abstract

The assessment of alveolar bone loss, a crucial element of the periodontium, plays a vital role in the diagnosis of periodontitis and the prognosis of the disease. In dentistry, artificial intelligence (AI) applications have demonstrated practical and efficient diagnostic capabilities, leveraging machine learning and cognitive problem-solving functions that mimic human abilities. This study aims to evaluate the effectiveness of AI models in identifying alveolar bone loss as present or absent across different regions. To achieve this goal, alveolar bone loss models were generated using the PyTorch-based YOLO-v5 model implemented via CranioCatch software, detecting periodontal bone loss areas and labeling them using the segmentation method on 685 panoramic radiographs. Besides general evaluation, models were grouped according to subregions (incisors, canines, premolars, and molars) to provide a targeted evaluation. Our findings reveal that the lowest sensitivity and F1 score values were associated with total alveolar bone loss, while the highest values were observed in the maxillary incisor region. It shows that artificial intelligence has a high potential in analytical studies evaluating periodontal bone loss situations. Considering the limited amount of data, it is predicted that this success will increase with the provision of machine learning by using a more comprehensive data set in further studies.

摘要

牙槽骨丧失评估作为牙周组织的关键要素,在牙周炎的诊断和疾病预后中起着至关重要的作用。在牙科领域,人工智能(AI)应用凭借机器学习和模仿人类能力的认知问题解决功能,展现出了实用且高效的诊断能力。本研究旨在评估AI模型在识别不同区域牙槽骨丧失情况(存在或不存在)方面的有效性。为实现这一目标,通过CranioCatch软件使用基于PyTorch的YOLO-v5模型生成牙槽骨丧失模型,在685张全景X光片上检测牙周骨丧失区域并使用分割方法对其进行标记。除了总体评估外,还根据子区域(切牙、尖牙、前磨牙和磨牙)对模型进行分组,以提供针对性评估。我们的研究结果表明,最低的灵敏度和F1分数值与全牙槽骨丧失相关,而最高值出现在上颌切牙区域。这表明人工智能在评估牙周骨丧失情况的分析研究中具有很大潜力。考虑到数据量有限,预计在进一步研究中通过使用更全面的数据集进行机器学习,这一成果将会得到提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b4/10217015/6e8d2ce02d0b/diagnostics-13-01800-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验