Suppr超能文献

关于在推特上分享一般和特定健康信息的隐私担忧:定量研究

Privacy Concerns About Sharing General and Specific Health Information on Twitter: Quantitative Study.

作者信息

Esmaeilzadeh Pouyan

机构信息

Department of Information Systems and Business Analytics, College of Business, Florida International University, Miami, FL, United States.

出版信息

JMIR Form Res. 2024 Jan 12;8:e45573. doi: 10.2196/45573.

Abstract

BACKGROUND

Twitter is a common platform for people to share opinions, discuss health-related topics, and engage in conversations with a wide audience. Twitter users frequently share health information related to chronic diseases, mental health, and general wellness topics. However, sharing health information on Twitter raises privacy concerns as it involves sharing personal and sensitive data on a web-based platform.

OBJECTIVE

This study aims to adopt an interactive approach and develop a model consisting of privacy concerns related to web-based vendors and web-based peers. The research model integrates the 4 dimensions of concern for information privacy that express concerns related to the practices of companies and the 4 dimensions of peer privacy concern that reflect concerns related to web-based interactions with peers. This study examined how this interaction may affect individuals' information-sharing behavior on Twitter.

METHODS

Data were collected from 329 Twitter users in the United States using a web-based survey.

RESULTS

Results suggest that privacy concerns related to company practices might not significantly influence the sharing of general health information, such as details about hospitals and medications. However, privacy concerns related to companies and third parties can negatively shape the disclosure of specific health information, such as personal medical issues (β=-.43; P<.001). Findings show that peer-related privacy concerns significantly predict sharing patterns associated with general (β=-.38; P<.001) and specific health information (β=-.72; P<.001). In addition, results suggest that people may disclose more general health information than specific health information owing to peer-related privacy concerns (t=4.72; P<.001). The model explains 41% of the variance in general health information disclosure and 67% in specific health information sharing on Twitter.

CONCLUSIONS

The results can contribute to privacy research and propose some practical implications. The findings provide insights for developers, policy makers, and health communication professionals about mitigating privacy concerns in web-based health information sharing. It particularly underlines the importance of addressing peer-related privacy concerns. The study underscores the need to build a secure and trustworthy web-based environment, emphasizing the significance of peer interactions and highlighting the need for improved regulations, clear data handling policies, and users' control over their own data.

摘要

背景

推特是人们分享观点、讨论健康相关话题以及与广大受众进行交流的常用平台。推特用户经常分享与慢性病、心理健康和总体健康话题相关的健康信息。然而,在推特上分享健康信息会引发隐私问题,因为这涉及在基于网络的平台上分享个人和敏感数据。

目的

本研究旨在采用一种交互式方法,开发一个由与基于网络的供应商和基于网络的同行相关的隐私问题组成的模型。该研究模型整合了表达对公司行为担忧的信息隐私关注的4个维度,以及反映与基于网络的同行互动相关担忧的同行隐私关注的4个维度。本研究考察了这种互动如何影响个人在推特上的信息分享行为。

方法

使用基于网络的调查从美国的329名推特用户收集数据。

结果

结果表明,与公司行为相关的隐私担忧可能不会显著影响一般健康信息的分享,比如关于医院和药物的细节。然而,与公司和第三方相关的隐私担忧会对特定健康信息的披露产生负面影响,比如个人医疗问题(β=-.43;P<.001)。研究结果表明,与同行相关的隐私担忧能显著预测与一般(β=-.38;P<.001)和特定健康信息(β=-.72;P<.001)相关的分享模式。此外,结果表明,由于与同行相关的隐私担忧,人们可能会披露更多的一般健康信息而非特定健康信息(t=4.72;P<.001)。该模型解释了推特上一般健康信息披露中41%的方差以及特定健康信息分享中67%的方差。

结论

这些结果有助于隐私研究并提出一些实际意义。研究结果为开发者、政策制定者和健康传播专业人员在减轻基于网络的健康信息分享中的隐私担忧方面提供了见解。它特别强调了处理与同行相关的隐私担忧的重要性。该研究强调了构建一个安全且值得信赖的基于网络的环境的必要性,强调了同行互动的重要性,并突出了改进法规、明确数据处理政策以及用户对自身数据的控制权的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92dc/10789368/82e224fe9ef4/formative_v8i1e45573_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验