Sheffield Centre for Health and Related Research, School of Medicine and Population Health, University of Sheffield, Sheffield, UK.
Department of Health Sciences, College of Life Sciences, University of Leicester, Leicester, UK.
Health Qual Life Outcomes. 2024 Jan 15;22(1):7. doi: 10.1186/s12955-023-02220-z.
The Short Warwick and Edinburgh Mental Wellbeing Scale (SWEMWBS) is a widely used non-preference-based measure of mental health in the UK. The primary aim of this paper is to construct an algorithm to translate the SWEMWBS scores to utilities using the Recovering Quality of Life Utility Index (ReQoL-UI) measure.
Service users experiencing mental health difficulties were recruited in two separate cross-sectional studies in the UK. The following direct mapping functions were used: Ordinary Least Square, Tobit, Generalised Linear Models. Indirect (response) mapping was performed using seemingly unrelated ordered probit to predict responses to each of the ReQoL-UI items and subsequently to predict using UK tariffs of the ReQoL-UI from SWEMWBS. The performance of all models was assessed by the mean absolute errors, root mean square errors between the predicted and observed utilities and graphical representations across the SWEMWBS score range.
Analyses were based on 2573 respondents who had complete data on the ReQoL-UI items, SWEMWBS items, age and sex. The direct mapping methods predicted ReQoL-UI scores across the range of SWEMWBS scores reasonably well. Very little differences were found among the three regression specifications in terms of model fit and visual inspection when comparing modelled and actual utility values across the score range of the SWEMWBS. However, when running simulations to consider uncertainty, it is clear that response mapping is superior.
This study presents mapping algorithms from SWEMWBS to ReQoL as an alternative way to generate utilities from SWEMWBS. The algorithm from the indirect mapping is recommended to predict utilities from the SWEMWBS.
短 Warwick 和爱丁堡心理健康量表(SWEMWBS)是英国广泛使用的一种非偏好为基础的心理健康衡量标准。本文的主要目的是构建一种算法,使用恢复生活质量效用指数(ReQoL-UI)来将 SWEMWBS 分数转换为效用。
在英国的两项独立横断面研究中招募了经历心理健康困难的服务使用者。使用了以下直接映射函数:普通最小二乘法、Tobit、广义线性模型。间接(反应)映射通过看似无关的有序概率回归来预测对 ReQoL-UI 每个项目的反应,然后使用英国 ReQoL-UI 的关税从 SWEMWBS 预测。通过平均绝对误差、预测和观察效用之间的均方根误差以及 SWEMWBS 分数范围内的图形表示来评估所有模型的性能。
分析基于 2573 名有完整 ReQoL-UI 项目、SWEMWBS 项目、年龄和性别数据的受访者。直接映射方法在 SWEMWBS 分数范围内合理地预测了 ReQoL-UI 分数。在比较 SWEMWBS 分数范围内的模型拟合和实际效用值时,三种回归规范在模型拟合和视觉检查方面几乎没有差异。然而,当运行模拟考虑不确定性时,很明显反应映射更优越。
本研究提出了从 SWEMWBS 到 ReQoL 的映射算法,作为从 SWEMWBS 生成效用的另一种方法。建议使用间接映射的算法从 SWEMWBS 预测效用。