University of Texas Health Science Center, Houston, TX, USA.
AMIA Annu Symp Proc. 2024 Jan 11;2023:814-823. eCollection 2023.
In the era of big data, there is an increasing need for healthcare providers, communities, and researchers to share data and collaborate to improve health outcomes, generate valuable insights, and advance research. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a federal law designed to protect sensitive health information by defining regulations for protected health information (PHI). However, it does not provide efficient tools for detecting or removing PHI before data sharing. One of the challenges in this area of research is the heterogeneous nature of PHI fields in data across different parties. This variability makes rule-based sensitive variable identification systems that work on one database fail on another. To address this issue, our paper explores the use of machine learning algorithms to identify sensitive variables in structured data, thus facilitating the de-identification process. We made a key observation that the distributions of metadata of PHI fields and non-PHI fields are very different. Based on this novel finding, we engineered over 30 features from the metadata of the original features and used machine learning to build classification models to automatically identify PHI fields in structured Electronic Health Record (EHR) data. We trained the model on a variety of large EHR databases from different data sources and found that our algorithm achieves 99% accuracy when detecting PHI-related fields for unseen datasets. The implications of our study are significant and can benefit industries that handle sensitive data.
在大数据时代,医疗保健提供者、社区和研究人员越来越需要共享数据并进行协作,以改善健康结果、生成有价值的见解和推进研究。1996 年的《健康保险携带和责任法案》(HIPAA)是一项旨在通过定义受保护健康信息(PHI)的法规来保护敏感健康信息的联邦法律。然而,它并没有提供在数据共享之前检测或删除 PHI 的有效工具。这一研究领域的挑战之一是不同方的数据中 PHI 字段的异构性质。这种可变性使得适用于一个数据库的基于规则的敏感变量识别系统在另一个数据库上失效。为了解决这个问题,我们的论文探讨了使用机器学习算法来识别结构化数据中的敏感变量,从而促进去识别过程。我们有一个重要的观察结果,即 PHI 字段和非 PHI 字段的元数据分布非常不同。基于这一新颖的发现,我们从原始特征的元数据中设计了 30 多个特征,并使用机器学习构建分类模型,以自动识别结构化电子健康记录(EHR)数据中的 PHI 字段。我们在来自不同数据源的各种大型 EHR 数据库上训练了该模型,并发现我们的算法在检测看不见的数据集的 PHI 相关字段时达到了 99%的准确率。我们的研究具有重要意义,可以使处理敏感数据的行业受益。