Suppr超能文献

基于解剖学辅助的医学图像分割深度学习:综述。

Anatomy-aided deep learning for medical image segmentation: a review.

机构信息

Applied Analysis, Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.

Data Management and Biometrics, Department of Computer Science, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.

出版信息

Phys Med Biol. 2021 May 26;66(11). doi: 10.1088/1361-6560/abfbf4.

Abstract

Deep learning (DL) has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which DL-based segmentation fails. Recently, some DL approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation. In this paper, we provide a review of anatomy-aided DL for medical image segmentation which covers systematically summarized anatomical information categories and corresponding representation methods. We address known and potentially solvable challenges in anatomy-aided DL and present a categorized methodology overview on using anatomical information with DL from over 70 papers. Finally, we discuss the strengths and limitations of the current anatomy-aided DL approaches and suggest potential future work.

摘要

深度学习(DL)近年来已广泛应用于医学图像分割。然而,尽管取得了这些进展,仍存在一些 DL 分割失败的问题。最近,一些基于 DL 的方法通过使用解剖学信息取得了突破,而解剖学信息是手动分割的关键线索。在本文中,我们对辅助医学图像分割的解剖学深度学习进行了综述,涵盖了系统总结的解剖学信息类别及其对应表示方法。我们讨论了辅助解剖学深度学习中已知的和潜在可解决的挑战,并从 70 多篇论文中介绍了使用 DL 和解剖学信息的分类方法概述。最后,我们讨论了当前解剖学辅助 DL 方法的优缺点,并提出了潜在的未来工作方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验