Suppr超能文献

用于临床蛋白质组学的激酶抑制剂下拉分析(KiP)

Kinase inhibitor pulldown assay (KiP) for clinical proteomics.

作者信息

Saltzman Alexander B, Chan Doug W, Holt Matthew V, Wang Junkai, Jaehnig Eric J, Anurag Meenakshi, Singh Purba, Malovannaya Anna, Kim Beom-Jun, Ellis Matthew J

机构信息

Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA.

Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

出版信息

Clin Proteomics. 2024 Jan 16;21(1):3. doi: 10.1186/s12014-023-09448-3.

Abstract

Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.

摘要

蛋白激酶在癌症中经常发生失调和/或突变,是治疗的重要靶点。准确的定量分析至关重要。对于乳腺癌治疗,蛋白激酶ERBB2的鉴定和定量对于治疗决策至关重要。虽然免疫组织化学(IHC)是目前的临床诊断方法,但它只是半定量的。基于质谱的蛋白质组学提供了定量分析方法,与免疫组织化学不同,它可用于同时准确评估数百种激酶。富集丰度较低的激酶靶点进行定量分析,同时去除干扰蛋白,可提高灵敏度,从而促进更有效的下游分析。因此,多种激酶抑制剂被用作激酶抑制剂下拉(KiP)分析的捕获基质,旨在尽可能广泛地分析人类蛋白激酶组。优化后的分析最初在16个患者来源的异种移植模型(PDX)中进行评估,在这些模型中,KiP分析鉴定出多种差异表达且具有生物学相关性的激酶。通过这些分析,开发了一种优化的单次平行反应监测(PRM)方法,以提高定量准确性。然后,将PRM KiP方法重新应用于人类癌症粗针活检典型产量的少量蛋白质。最初针对100种激酶的原型分析重现了从全面蛋白质组学和转录组学分析中获得的PDX模型的内在亚型分类。随后通过KiP-PRM分析的富含管腔和HER2的OCT冷冻患者活检样本也按亚型聚类。最后,开发了稳定同位素标记的肽标准品,以定义一种临床原型方法。数据可通过ProteomeXchange获得,标识符为PXD044655和PXD046169。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c17c/10790396/1e703efb72cb/12014_2023_9448_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验