Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
J Am Chem Soc. 2024 Jan 24;146(3):1977-1983. doi: 10.1021/jacs.3c09733. Epub 2024 Jan 16.
Ethylene-forming enzyme (EFE) is an iron(II)-dependent dioxygenase that fragments 2-oxoglutarate (2OG) to ethylene (from C3 and C4) and 3 equivs of carbon dioxide (from C1, C2, and C5). This major ethylene-forming pathway requires l-arginine as the effector and competes with a minor pathway that merely decarboxylates 2OG to succinate as it oxidatively fragments l-arginine. We previously proposed that ethylene forms in a polar-concerted (Grob-like) fragmentation of a (2-carboxyethyl)carbonatoiron(II) intermediate, formed by the coupling of a C3-C5-derived propion-3-yl radical to a C1-derived carbonate coordinated to the Fe(III) cofactor. Replacement of one or both C4 hydrogens of 2OG by fluorine, methyl, or hydroxyl favored the elimination products 2-(F/Me/OH)-3-hydroxypropionate and CO over the expected olefin or carbonyl products, implying strict stereoelectronic requirements in the final step, as is known for Grob fragmentations. Here, we substituted active-site residues expected to interact sterically with the proposed Grob intermediate, aiming to disrupt or enable the antiperiplanar disposition of the carboxylate electrofuge and carbonate nucleofuge required for concerted fragmentation. The bulk-increasing A198L substitution barely affects the first partition between the major and minor pathways but then, as intended, markedly diminishes ethylene production in favor of 3-hydroxypropionate. Conversely, the bulk-diminishing L206V substitution enables propylene formation from (4)-methyl-2OG, presumably by allowing the otherwise sterically disfavored antiperiplanar conformation of the Grob intermediate bearing the extra methyl group. The results provide additional evidence for a polar-concerted ethylene-yielding step and thus for the proposed radical-polar crossover via substrate-radical coupling to the Fe(III)-coordinated carbonate.
乙烯形成酶 (EFE) 是一种依赖铁 (II) 的双氧酶,它将 2-氧代戊二酸 (2OG) 断裂为乙烯 (来自 C3 和 C4) 和 3 当量的二氧化碳 (来自 C1、C2 和 C5)。这种主要的乙烯形成途径需要 l-精氨酸作为效应物,并与次要途径竞争,次要途径仅将 2OG 脱羧化为琥珀酸,同时氧化断裂 l-精氨酸。我们之前提出,乙烯通过 (2-羧乙基) 碳酸铁 (II) 中间体的极性协同 (Grob 样) 断裂形成,该中间体由 C3-C5 衍生的丙基自由基与 C1 衍生的与 Fe(III) 辅因子配位的碳酸根偶联形成。2OG 的一个或两个 C4 氢被氟、甲基或羟基取代,有利于消除产物 2-(F/Me/OH)-3-羟基丙酸盐和 CO 而不是预期的烯烃或羰基产物,这意味着在最后一步存在严格的立体电子要求,就像 Grob 断裂一样。在这里,我们取代了活性位点残基,预计这些残基会与所提出的 Grob 中间体相互作用,旨在破坏或使所需的反式排列的羧基离去基团和碳酸亲核基团处于协同断裂的位置。体积增大的 A198L 取代对主要和次要途径之间的第一个分配几乎没有影响,但随后,如预期的那样,明显减少了乙烯的产生,有利于 3-羟基丙酸盐的产生。相反,体积减小的 L206V 取代使 (4)-甲基-2OG 能够形成丙烯,这可能是因为允许 Grob 中间体带有额外甲基的情况下,否则在空间上不利的反式排列构象。结果提供了额外的证据证明了极性协同的乙烯生成步骤,因此也证明了通过底物自由基偶联到 Fe(III) 配位的碳酸根的自由基-极性交叉。