Suppr超能文献

基于深度学习多尺度特征融合的乒乓球目标检测算法优化

Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning.

作者信息

Rong Zhang

机构信息

Shaanxi Energy Institute, Xi'an, 71000, Shaanxi, China.

出版信息

Sci Rep. 2024 Jan 16;14(1):1401. doi: 10.1038/s41598-024-51865-3.

Abstract

This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.

摘要

本文旨在提出一种基于深度学习(DL)和多尺度特征融合(MFF)的乒乓球目标检测(TD)方法,以提高乒乓球比赛中球的检测精度,优化运动员的训练过程,并提升技术水平。本文利用DL技术在MFF的引导下提高乒乓球TD的精度。最初,基于快速区域卷积神经网络(FAST R-CNN)在乒乓球比赛中进行TD。然后,通过MFF引导的方法融合不同层次的特征信息,提高了TD的精度。通过在测试集上的实验验证,发现本文提出的目标检测算法(TDA)的平均精度均值(mAP)值达到87.3%,明显优于其他TDA,具有更高的鲁棒性。结合所提出的MFF的DL TDA可应用于各种检测领域,并有助于TD在现实生活中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb1/10792085/df4dc090ff6a/41598_2024_51865_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验