Suppr超能文献

乒乓球赛事电子裁判计分中的运动目标检测模型

Motion Object Detection Model for Electronic Referee Scoring in Table Tennis Events.

作者信息

Li Xiaoke, Guo Lili

机构信息

Faculty of Physical Education, Pingdingshan University, Pingdingshan, China.

出版信息

PLoS One. 2025 Mar 19;20(3):e0319558. doi: 10.1371/journal.pone.0319558. eCollection 2025.

Abstract

As a sport widely played around the world, the fairness and enjoyment of table tennis competitions have received increasing attention. Traditional table tennis referees rely on manual judgment, which has problems such as strong subjectivity and high misjudgment rate. Therefore, this study combines the background subtraction method and the Kalman filtering algorithm. It processes missing images in videos to propose a motion object detection and motion estimation model for table tennis events. The test results showed that the average loss value of the model was only 0.33, the average detection accuracy in the 20-category data set was 0.94, and the average detection time was 103.9 ms. In the simulation test, the model achieved the best trajectory prediction accuracy in both complete video images and partially missing information video images. The maximum difference in horizontal and vertical directions was 10.7 and 4.3 pixels, respectively, and the maximum error in three-dimensional coordinates was (3.3, 2.8, 2.1). The table tennis target detection and motion estimation model has high detection accuracy and stability, providing new ideas and methods for the development of electronic referee systems in table tennis competitions.

摘要

作为一项在全球广泛开展的运动,乒乓球比赛的公平性和观赏性受到了越来越多的关注。传统的乒乓球裁判依靠人工判罚,存在主观性强、误判率高等问题。因此,本研究结合背景减法和卡尔曼滤波算法,对视频中的缺失图像进行处理,提出了一种乒乓球赛事运动目标检测与运动估计模型。测试结果表明,该模型的平均损失值仅为0.33,在20类数据集中的平均检测准确率为0.94,平均检测时间为103.9毫秒。在模拟测试中,该模型在完整视频图像和部分信息缺失的视频图像中均实现了最佳的轨迹预测精度。水平和垂直方向的最大差异分别为10.7像素和4.3像素,三维坐标的最大误差为(3.3, 2.8, 2.1)。该乒乓球目标检测与运动估计模型具有较高的检测精度和稳定性,为乒乓球比赛电子裁判系统的发展提供了新的思路和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e666/11922261/f13709c22ff3/pone.0319558.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验