Suppr超能文献

深度学习在乒乓球技术战术指标自动检测中的应用。

Application of deep learning in automatic detection of technical and tactical indicators of table tennis.

机构信息

College of general education, Qingdao Huanghai University, Qing' Dao, Shandong, China.

出版信息

PLoS One. 2021 Mar 9;16(3):e0245259. doi: 10.1371/journal.pone.0245259. eCollection 2021.

Abstract

A DCNN-LSTM (Deep Convolutional Neural Network-Long Short Term Memory) model is proposed to recognize and track table tennis's real-time trajectory in complex environments, aiming to help the audiences understand competition details and provide a reference for training enthusiasts using computers. Real-time motion features are extracted via deep reinforcement networks. DCNN tracks the recognized objects, and the LSTM algorithm predicts the ball's trajectory. The model is tested on a self-built video dataset and existing systems and compared with other algorithms to verify its effectiveness. Finally, an overall tactical detection system is built to measure ball rotation and predict ball trajectory. Results demonstrate that in feature extraction, the Deep Deterministic Policy Gradient (DDPG) algorithm has the best performance, with a maximum accuracy rate of 89% and a minimum mean square error of 0.2475. The accuracy of target tracking effect and trajectory prediction is as high as 90%. Compared with traditional methods, the performance of the DCNN-LSTM model based on deep learning is improved by 23.17%. The implemented automatic detection system of table tennis tactical indicators can deal with the problems of table tennis tracking and rotation measurement. It can provide a theoretical foundation and practical value for related research in real-time dynamic detection of balls.

摘要

提出了一种 DCNN-LSTM(深度卷积神经网络-长短期记忆)模型,用于识别和跟踪复杂环境中乒乓球的实时轨迹,旨在帮助观众了解比赛细节,并为电脑训练爱好者提供参考。通过深度强化网络提取实时运动特征。DCNN 跟踪识别的物体,LSTM 算法预测球的轨迹。该模型在自建视频数据集和现有系统上进行了测试,并与其他算法进行了比较,以验证其有效性。最后,建立了一个整体战术检测系统,用于测量球的旋转和预测球的轨迹。结果表明,在特征提取方面,深度确定性策略梯度(DDPG)算法的性能最好,最大准确率为 89%,最小均方误差为 0.2475。目标跟踪效果和轨迹预测的准确率高达 90%。与传统方法相比,基于深度学习的 DCNN-LSTM 模型的性能提高了 23.17%。所实现的乒乓球战术指标自动检测系统可以解决乒乓球跟踪和旋转测量的问题。它可以为球实时动态检测的相关研究提供理论基础和实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ed/7943021/bf8b9fd50d39/pone.0245259.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验