Suppr超能文献

基于双通道目标运动检测的乒乓球落地点识别与计分算法。

Falling-Point Recognition and Scoring Algorithm in Table Tennis Using Dual-Channel Target Motion Detection.

机构信息

Northeastern University, Shenyang 110819, Liaoning, China.

School of Physical Education, Northwest Minzu University, Lanzhou 730030, Gansu, China.

出版信息

J Healthc Eng. 2021 Apr 19;2021:5529981. doi: 10.1155/2021/5529981. eCollection 2021.

Abstract

In table tennis, the ball has numerous characteristics of high speed, small size, and changeable trajectory. Due to these characteristics, the human eye often cannot accurately judge the ball's movement and position, leading to the problem of precise detection of the ball's falling point and movement tracking. In sports, the use of machine learning for locating and detecting the ball and the use of deep learning for reconstructing and displaying the ball's trajectories are considered futuristic technologies. Therefore, this paper proposes a novel algorithm for identifying and scoring points in table tennis based on dual-channel target motion detection. The proposed algorithm consists of multiple input channels to jointly learn different features of table tennis images. The original image is used as the input of the first channel, and then the Sobel operator is used to extract the first-order derivative feature of the original image, which is used as the input of the second channel. The table tennis feature information from the two channels is then fused and sent to the 3D neural network module. The fully connected layer is used to identify the table tennis ball's drop point, compare it with a standard drop point, calculate the error distance, and give a score. We also constructed a data set and conducted experiments. The experimental results show that the method in this paper is effective in sports.

摘要

在乒乓球运动中,球具有高速、小尺寸和轨迹多变等特点。由于这些特点,人眼往往无法准确判断球的运动和位置,导致球的落地点和运动轨迹的精确检测存在问题。在体育领域,使用机器学习进行球的定位和检测,以及使用深度学习进行球的轨迹重建和显示,被认为是未来的技术。因此,本文提出了一种基于双通道目标运动检测的乒乓球识别和计分的新算法。所提出的算法由多个输入通道组成,共同学习乒乓球图像的不同特征。原始图像作为第一通道的输入,然后使用 Sobel 算子提取原始图像的一阶导数特征,作为第二通道的输入。然后融合来自两个通道的乒乓球特征信息,并将其发送到 3D 神经网络模块。使用全连接层识别乒乓球的落地点,与标准落地点进行比较,计算误差距离,并给出分数。我们还构建了一个数据集并进行了实验。实验结果表明,本文方法在体育运动中是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869a/8079194/aa33e942f637/JHE2021-5529981.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验