Yao Xiayan, Guo Jianwei, Wang Zhi, Qian Guoyu, Wang XiangYu, Wang Dong, Gong Xuzhong
National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
JACS Au. 2025 Aug 5;5(8):3926-3943. doi: 10.1021/jacsau.5c00585. eCollection 2025 Aug 25.
Tuning interfacial water structures is a fundamental yet underexplored strategy for advancing the hydrogen evolution reaction (HER) and broader electrocatalytic processes. Here, we demonstrate a universal and scalable catalytic optimization strategy via the magnetic field-driven reconfiguration of interfacial water at the molecular level. Unlike conventional magnetohydrodynamic (MHD) strategies focusing on mass transport, this work pioneers a molecular-level interfacial water structure modulation via the vibrational Stark effect (VSE), achieving intrinsic catalytic enhancement for HER. In situ Raman spectroscopy and molecular dynamics (MD) simulations reveal that the permanent magnetic field-induced amplification of the DDAA configuration population is governed by the VSE, leading to a restructured interfacial weak hydrogen bond (HB) network and enhanced charge transfer kinetics. As a result, under a 1 T permanent magnetic field and a controlled flow rate of 100 mL/min, the HER overpotential is reduced by 50 mV at 10 mA·cm, with stable performance sustained for over 10 h, a level of enhancement far exceeding previous magnetic field-assisted HER studies. Beyond HER, this strategy offers a generalizable approach for tuning interfacial water structures, which could be extended to other electrocatalytic reactions, where HB networks and interfacial water structuring play a critical role. As a result, the overpotential was reduced by 50 mV at 10 mA·cm, and a 15.40% increase in current density was achieved under industrial alkaline electrolysis conditions, demonstrating clear advantages over existing magnetic field-assisted HER strategies. This study provided a scalable, molecular-level catalytic interface engineering approach, offering valuable insights into advanced electrocatalytic processes and significant potential for industrial hydrogen production technologies.
调节界面水结构是推进析氢反应(HER)及更广泛的电催化过程的一种基本但尚未充分探索的策略。在此,我们展示了一种通用且可扩展的催化优化策略,即通过磁场驱动在分子水平上对界面水进行重新配置。与专注于质量传输的传统磁流体动力学(MHD)策略不同,这项工作开创了通过振动斯塔克效应(VSE)对分子水平的界面水结构进行调制的方法,实现了HER的本征催化增强。原位拉曼光谱和分子动力学(MD)模拟表明,永久磁场诱导的DDAA构型群体的放大受VSE控制,导致界面弱氢键(HB)网络重构并增强了电荷转移动力学。结果,在1 T永久磁场和100 mL/min的控制流速下,在10 mA·cm时HER过电位降低了50 mV,稳定性能持续超过10 h,增强水平远远超过以前的磁场辅助HER研究。除了HER之外,该策略还提供了一种可推广的调节界面水结构的方法,可扩展到其他电催化反应,其中HB网络和界面水结构起着关键作用。结果,在10 mA·cm时过电位降低了50 mV,在工业碱性电解条件下电流密度提高了15.40%,显示出相对于现有磁场辅助HER策略的明显优势。这项研究提供了一种可扩展的、分子水平的催化界面工程方法,为先进的电催化过程提供了有价值的见解,并为工业制氢技术带来了巨大潜力。