Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
J Phys Chem Lett. 2022 Jul 14;13(27):6383-6390. doi: 10.1021/acs.jpclett.2c01734. Epub 2022 Jul 7.
The formation of surface-bound hydrogen from one proton and one electron plays an enabling role in renewable hydrogen production. Quantifying the surface-bound hydrogen formation, however, requires decoupling the delicate interplay of numerous processes. We study cyclic voltammetry (CV) at fast scan rates to characterize the rate constant for the surface-bound hydrogen formation (also known as underpotential deposition hydrogen, UPD H). We find that the formation of H on Pt(111) single crystals is ∼100× faster in acid than in base. Reaction-order analysis indicates that the formation of H occurs as a standard proton-coupled electron transfer (PCET) reaction in acid, whereas in base, it displays a pH-independent rate constant, indicating the presence of a chemical step such as the reorganization of interfacial water. Our results provide a methodology for quantifying the interfacial PCET kinetics and reveal the mechanistic nature of the UPD H formation as the reason the hydrogen evolution electrocatalysis on Pt is faster in acid than in base.
从一个质子和一个电子形成表面结合氢在可再生制氢中起着重要作用。然而,要量化表面结合氢的形成,就需要解耦众多过程之间的微妙相互作用。我们通过快速扫描伏安法(CV)研究来表征表面结合氢形成(也称为欠电位沉积氢,UPD H)的速率常数。我们发现,在酸性条件下,Pt(111)单晶上 H 的形成速度比在碱性条件下快约 100 倍。反应级数分析表明,在酸性条件下,H 的形成是作为标准质子耦合电子转移(PCET)反应发生的,而在碱性条件下,它显示出与 pH 无关的速率常数,表明存在化学步骤,如界面水的重组。我们的结果为量化界面 PCET 动力学提供了一种方法,并揭示了 UPD H 形成的机理性质,这就是为什么在酸性条件下 Pt 的析氢电催化比碱性条件下更快的原因。