Department of Mathematics, Malaviya National Institute of Technology Jaipur, Jaipur, India.
Department of Mathematics, Central University of Rajasthan, Ajmer, India.
Sci Rep. 2024 Jan 18;14(1):1636. doi: 10.1038/s41598-024-51430-y.
This study focuses on improving the accuracy of assessing liver damage and early detection for improved treatment strategies. In this study, we examine the human liver using a modified Atangana-Baleanu fractional derivative based on the mathematical model to understand and predict the behavior of the human liver. The iteration method and fixed-point theory are used to investigate the presence of a unique solution in the new model. Furthermore, the homotopy analysis transform method, whose convergence is also examined, implements the mathematical model. Finally, numerical testing is performed to demonstrate the findings better. According to real clinical data comparison, the new fractional model outperforms the classical integer-order model with coherent temporal derivatives.
本研究致力于提高评估肝损伤和早期检测的准确性,以制定改进的治疗策略。在本研究中,我们使用基于数学模型的改进的 Atangana-Baleanu 分数导数来研究人类肝脏,以了解和预测人类肝脏的行为。迭代法和不动点理论用于研究新模型中存在唯一解的情况。此外,还使用了同伦分析变换方法来实现该数学模型,其收敛性也进行了检验。最后,通过数值测试来更好地展示研究结果。根据真实临床数据的比较,新的分数阶模型比具有一致时间导数的经典整数阶模型表现更好。