Si Min-Jae, Jee Seungin, Yang Minjung, Kim Dongeon, Ahn Yongnam, Lee Seungjin, Kim Changjo, Bae In-Ho, Baek Se-Woong
Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea.
Adv Sci (Weinh). 2024 Apr;11(13):e2306798. doi: 10.1002/advs.202306798. Epub 2024 Jan 19.
Solution-processed low-bandgap semiconductors are crucial to next-generation infrared (IR) detection for various applications, such as autonomous driving, virtual reality, recognitions, and quantum communications. In particular, III-V group colloidal quantum dots (CQDs) are interesting as nontoxic bandgap-tunable materials and suitable for IR absorbers; however, the device performance is still lower than that of Pb-based devices. Herein, a universal surface-passivation method of InAs CQDs enabled by intermediate phase transfer (IPT), a preliminary process that exchanges native ligands with aromatic ligands on the CQD surface is presented. IPT yields highly stable CQD ink. In particular, desirable surface ligands with various reactivities can be obtained by dispersing them in green solvents. Furthermore, CQD near-infrared (NIR) photodetectors are demonstrated using solution processes. Careful surface ligand control via IPT is revealed that enables the modulation of surface-mediated photomultiplication, resulting in a notable gain control up to ≈10 with a fast rise/fall response time (≈12/36 ns). Considering the figure of merit (FOM), EQE versus response time (or -3 dB bandwidth), the optimal CQD photodiode yields one of the highest FOMs among all previously reported solution-processed nontoxic semiconductors comprising organics, perovskites, and CQDs in the NIR wavelength range.
溶液法制备的低带隙半导体对于自动驾驶、虚拟现实、识别和量子通信等各种应用的下一代红外(IR)探测至关重要。特别是,III-V族胶体量子点(CQD)作为无毒的带隙可调材料且适用于红外吸收体很受关注;然而,其器件性能仍低于基于铅的器件。在此,提出了一种通过中间相转移(IPT)实现的InAs CQD通用表面钝化方法,IPT是一种在CQD表面将天然配体与芳香族配体交换的初步过程。IPT可产生高度稳定的CQD墨水。特别是,通过将它们分散在绿色溶剂中可以获得具有各种反应活性的理想表面配体。此外,使用溶液法展示了CQD近红外(NIR)光电探测器。结果表明,通过IPT进行仔细的表面配体控制能够调节表面介导的光倍增,从而在快速上升/下降响应时间(≈12/36 ns)下实现高达≈10的显著增益控制。考虑到品质因数(FOM),即外量子效率(EQE)与响应时间(或 -3 dB带宽)的关系,在所有先前报道的包括有机物、钙钛矿和CQD的溶液法制备的无毒半导体中,最优的CQD光电二极管在近红外波长范围内产生了最高的FOM之一。