Perception Vision Medical Technologies Co., Ltd, Guangzhou, 510530, China.
Perception Vision Medical Technologies Co., Ltd, Guangzhou, 510530, China.
Comput Biol Med. 2024 Mar;170:107991. doi: 10.1016/j.compbiomed.2024.107991. Epub 2024 Jan 15.
Semi-supervised learning plays a vital role in computer vision tasks, particularly in medical image analysis. It significantly reduces the time and cost involved in labeling data. Current methods primarily focus on consistency regularization and the generation of pseudo labels. However, due to the model's poor awareness of unlabeled data, aforementioned methods may misguide the model. To alleviate this problem, we propose a dual consistency regularization with subjective logic for semi-supervised medical image segmentation. Specifically, we introduce subjective logic into our semi-supervised medical image segmentation task to estimate uncertainty, and based on the consistency hypothesis, we construct dual consistency regularization under weak and strong perturbations to guide the model's learning from unlabeled data. To evaluate the performance of the proposed method, we performed experiments on three widely used datasets: ACDC, LA, and Pancreas. Experiments show that the proposed method achieved improvement compared with other state-of-the-art (SOTA) methods.
半监督学习在计算机视觉任务中起着至关重要的作用,特别是在医学图像分析中。它大大减少了标记数据所需的时间和成本。目前的方法主要集中在一致性正则化和伪标签的生成上。然而,由于模型对未标记数据的感知能力较差,上述方法可能会误导模型。为了解决这个问题,我们提出了一种用于半监督医学图像分割的具有主观逻辑的双重一致性正则化方法。具体来说,我们将主观逻辑引入到半监督医学图像分割任务中,以估计不确定性,并且基于一致性假设,我们在弱和强扰动下构建双重一致性正则化,以指导模型从未标记数据中学习。为了评估所提出方法的性能,我们在三个广泛使用的数据集上进行了实验:ACDC、LA 和 Pancreas。实验表明,与其他最先进的方法相比,所提出的方法取得了改进。