Wang Ran, Lyu Chengqi, Yu Lvfeng
Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Front Oncol. 2025 May 9;15:1577198. doi: 10.3389/fonc.2025.1577198. eCollection 2025.
Oral cavity-derived cancer pathological images (OPI) are crucial for diagnosing oral squamous cell carcinoma (OSCC), but existing deep learning methods for OPI segmentation rely heavily on large, accurately labeled datasets, which are labor- and resource-intensive to obtain. This paper presents a semi-supervised segmentation method for OPI to mitigate the limitations of scarce labeled data by leveraging both labeled and unlabeled data.
We use the Hematoxylin and Eosin (H&E)-stained oral cavity-derived cancer dataset (OCDC), which consists of 451 images with tumor regions annotated and verified by pathologists. Our method combines transformation uncertainty and multi-scale contrastive learning. The transformation uncertainty estimation evaluates the model's confidence on data transformed via different methods, reducing discrepancies between the teacher and student models. Multi-scale contrastive learning enhances class similarity and separability while reducing teacher-student model similarity, encouraging diverse feature representations. Additionally, a boundary-aware enhanced U-Net is proposed to capture boundary information and improve segmentation accuracy.
Experimental results on the OCDC dataset demonstrate that our method outperforms both fully supervised and existing semi-supervised approaches, achieving superior segmentation performance.
Our semi-supervised method, integrating transformation uncertainty, multi-scale contrastive learning, and a boundary-aware enhanced U-Net, effectively addresses data scarcity and improves segmentation accuracy. This approach reduces the dependency on large labeled datasets, promoting the application of AI in OSCC detection and improving the efficiency and accuracy of clinical diagnoses for OSCC.
口腔来源癌症病理图像(OPI)对于口腔鳞状细胞癌(OSCC)的诊断至关重要,但现有的用于OPI分割的深度学习方法严重依赖大量准确标注的数据集,而获取这些数据集需要耗费大量人力和资源。本文提出一种用于OPI的半监督分割方法,通过利用已标注和未标注数据来减轻稀缺标注数据的局限性。
我们使用苏木精和伊红(H&E)染色的口腔来源癌症数据集(OCDC),该数据集由451张图像组成,肿瘤区域由病理学家进行标注和验证。我们的方法结合了变换不确定性和多尺度对比学习。变换不确定性估计评估模型对通过不同方法变换后的数据的置信度,减少教师模型和学生模型之间的差异。多尺度对比学习增强类相似性和可分离性,同时降低教师 - 学生模型相似性,鼓励多样化的特征表示。此外,还提出了一种边界感知增强U-Net来捕捉边界信息并提高分割精度。
在OCDC数据集上的实验结果表明,我们的方法优于全监督和现有的半监督方法,实现了卓越的分割性能。
我们的半监督方法,集成了变换不确定性、多尺度对比学习和边界感知增强U-Net,有效解决了数据稀缺问题并提高了分割精度。这种方法减少了对大量标注数据集的依赖,促进了人工智能在OSCC检测中的应用,并提高了OSCC临床诊断的效率和准确性。