Program in Health Services & Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
Academy of Statistics and Interdisciplinary Sciences, East China Normal University, 3663 Zhongshan North Road, 200062, Shanghai, China.
Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab466.
Spatial transcriptomics has been emerging as a powerful technique for resolving gene expression profiles while retaining tissue spatial information. These spatially resolved transcriptomics make it feasible to examine the complex multicellular systems of different microenvironments. To answer scientific questions with spatial transcriptomics and expand our understanding of how cell types and states are regulated by microenvironment, the first step is to identify cell clusters by integrating the available spatial information. Here, we introduce SC-MEB, an empirical Bayes approach for spatial clustering analysis using a hidden Markov random field. We have also derived an efficient expectation-maximization algorithm based on an iterative conditional mode for SC-MEB. In contrast to BayesSpace, a recently developed method, SC-MEB is not only computationally efficient and scalable to large sample sizes but is also capable of choosing the smoothness parameter and the number of clusters. We performed comprehensive simulation studies to demonstrate the superiority of SC-MEB over some existing methods. We applied SC-MEB to analyze the spatial transcriptome of human dorsolateral prefrontal cortex tissues and mouse hypothalamic preoptic region. Our analysis results showed that SC-MEB can achieve a similar or better clustering performance to BayesSpace, which uses the true number of clusters and a fixed smoothness parameter. Moreover, SC-MEB is scalable to large 'sample sizes'. We then employed SC-MEB to analyze a colon dataset from a patient with colorectal cancer (CRC) and COVID-19, and further performed differential expression analysis to identify signature genes related to the clustering results. The heatmap of identified signature genes showed that the clusters identified using SC-MEB were more separable than those obtained with BayesSpace. Using pathway analysis, we identified three immune-related clusters, and in a further comparison, found the mean expression of COVID-19 signature genes was greater in immune than non-immune regions of colon tissue. SC-MEB provides a valuable computational tool for investigating the structural organizations of tissues from spatial transcriptomic data.
空间转录组学是一种强大的技术,它可以在保留组织空间信息的同时解析基因表达谱。这些空间分辨率转录组学使得研究不同微环境的复杂多细胞系统成为可能。为了利用空间转录组学回答科学问题并扩展我们对细胞类型和状态如何受微环境调控的理解,第一步是通过整合可用的空间信息来识别细胞簇。在这里,我们介绍了 SC-MEB,这是一种使用隐马尔可夫随机场的空间聚类分析的经验贝叶斯方法。我们还基于迭代条件模式为 SC-MEB 推导出了一种有效的期望最大化算法。与最近开发的方法 BayesSpace 不同,SC-MEB 不仅计算效率高,可扩展到大数据集,而且还能够选择平滑参数和聚类数。我们进行了全面的模拟研究,以证明 SC-MEB 优于一些现有方法。我们将 SC-MEB 应用于分析人类背外侧前额叶皮层组织和小鼠下丘脑视前区的空间转录组。我们的分析结果表明,SC-MEB 可以实现与使用真实聚类数和固定平滑参数的 BayesSpace 相似或更好的聚类性能。此外,SC-MEB 可扩展到大'样本量'。然后,我们使用 SC-MEB 分析了一名结直肠癌(CRC)和 COVID-19 患者的结肠数据集,并进一步进行差异表达分析,以确定与聚类结果相关的特征基因。鉴定特征基因的热图表明,使用 SC-MEB 识别的聚类比使用 BayesSpace 获得的聚类更可分离。通过通路分析,我们确定了三个与免疫相关的聚类,在进一步的比较中,发现结肠组织免疫区域中 COVID-19 特征基因的平均表达高于非免疫区域。SC-MEB 为研究来自空间转录组数据的组织结构组织提供了一种有价值的计算工具。