Computational Diagnostics Lab, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Radiology, University of California, Los Angeles, Los Angeles, CA, USA.
Comput Biol Med. 2024 Mar;170:107974. doi: 10.1016/j.compbiomed.2024.107974. Epub 2024 Jan 12.
An increase in the incidence and diagnosis of thyroid nodules and thyroid cancer underscores the need for a better approach to nodule detection and risk stratification in ultrasound (US) images that can reduce healthcare costs, patient discomfort, and unnecessary invasive procedures. However, variability in ultrasound technique and interpretation makes the diagnostic process partially subjective. Therefore, an automated approach that detects and segments nodules could improve performance on downstream tasks, such as risk stratification. Ultrasound studies were acquired from 280 patients at UCLA Health, totaling 9888 images, and annotated by collaborating radiologists. Current deep learning architectures for segmentation are typically semi-automated because they are evaluated solely on images known to have nodules and do not assess ability to identify suspicious images. However, the proposed multitask approach both detects suspicious images and segments potential nodules; this allows for a clinically translatable model that aptly parallels the workflow for thyroid nodule assessment. The multitask approach is centered on an anomaly detection (AD) module that can be integrated with any UNet architecture variant to improve image-level nodule detection. Of the evaluated multitask models, a UNet with a ImageNet pretrained encoder and AD achieved the highest F1 score of 0.839 and image-wide Dice similarity coefficient of 0.808 on the hold-out test set. Furthermore, models were evaluated on two external validations datasets to demonstrate generalizability and robustness to data variability. Ultimately, the proposed architecture is an automated multitask method that expands on previous methods by successfully both detecting and segmenting nodules in ultrasound.
甲状腺结节和甲状腺癌的发病率和诊断率上升,突显了需要更好的方法来检测超声 (US) 图像中的结节并进行风险分层,以降低医疗保健成本、减少患者不适和不必要的侵入性操作。然而,超声技术和解释的可变性使得诊断过程部分主观。因此,一种能够检测和分割结节的自动化方法可以提高下游任务(例如风险分层)的性能。这项研究采集了来自加州大学洛杉矶分校健康中心的 280 名患者的超声研究数据,总计 9888 张图像,并由合作放射科医生进行了注释。目前用于分割的深度学习架构通常是半自动的,因为它们仅在已知存在结节的图像上进行评估,而不评估识别可疑图像的能力。然而,所提出的多任务方法既可以检测可疑图像,又可以分割潜在的结节;这使得可以开发出一种与甲状腺结节评估工作流程相匹配的临床可转化模型。该多任务方法的核心是异常检测 (AD) 模块,该模块可以与任何 UNet 架构变体集成,以提高图像级别的结节检测能力。在所评估的多任务模型中,具有 ImageNet 预训练编码器和 AD 的 UNet 在保留测试集上实现了最高的 F1 分数 0.839 和图像宽的 Dice 相似系数 0.808。此外,还在两个外部验证数据集上评估了模型,以证明其泛化能力和对数据变异性的稳健性。最终,所提出的架构是一种自动化的多任务方法,通过成功地在超声中检测和分割结节,扩展了以前的方法。