文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Instantaneous Generation of Subject-Specific Finite Element Models of the Hip Capsule.

作者信息

Anantha-Krishnan Ahilan, Myers Casey A, Fitzpatrick Clare K, Clary Chadd W

机构信息

Center of Orthopaedic Biomechanics, University of Denver, Denver, CO 80208, USA.

Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725, USA.

出版信息

Bioengineering (Basel). 2023 Dec 28;11(1):37. doi: 10.3390/bioengineering11010037.


DOI:10.3390/bioengineering11010037
PMID:38247914
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10813259/
Abstract

Subject-specific hip capsule models could offer insights into impingement and dislocation risk when coupled with computer-aided surgery, but model calibration is time-consuming using traditional techniques. This study developed a framework for instantaneously generating subject-specific finite element (FE) capsule representations from regression models trained with a probabilistic approach. A validated FE model of the implanted hip capsule was evaluated probabilistically to generate a training dataset relating capsule geometry and material properties to hip laxity. Multivariate regression models were trained using 90% of trials to predict capsule properties based on hip laxity and attachment site information. The regression models were validated using the remaining 10% of the training set by comparing differences in hip laxity between the original trials and the regression-derived capsules. Root mean square errors (RMSEs) in laxity predictions ranged from 1.8° to 2.3°, depending on the type of laxity used in the training set. The RMSE, when predicting the laxity measured from five cadaveric specimens with total hip arthroplasty, was 4.5°. Model generation time was reduced from days to milliseconds. The results demonstrated the potential of regression-based training to instantaneously generate subject-specific FE models and have implications for integrating subject-specific capsule models into surgical planning software.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/cdb8a9ba95b9/bioengineering-11-00037-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/b70e5946b840/bioengineering-11-00037-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/3c2e3ec0b28e/bioengineering-11-00037-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/fc9fec2a3aa9/bioengineering-11-00037-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/54d8e1afa9a1/bioengineering-11-00037-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/fc7c8f8d3495/bioengineering-11-00037-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/dfa38e8b54a0/bioengineering-11-00037-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/7d2d8c4795fa/bioengineering-11-00037-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/a99b220131d5/bioengineering-11-00037-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/cdb8a9ba95b9/bioengineering-11-00037-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/b70e5946b840/bioengineering-11-00037-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/3c2e3ec0b28e/bioengineering-11-00037-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/fc9fec2a3aa9/bioengineering-11-00037-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/54d8e1afa9a1/bioengineering-11-00037-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/fc7c8f8d3495/bioengineering-11-00037-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/dfa38e8b54a0/bioengineering-11-00037-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/7d2d8c4795fa/bioengineering-11-00037-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/a99b220131d5/bioengineering-11-00037-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfea/10813259/cdb8a9ba95b9/bioengineering-11-00037-g009.jpg

相似文献

[1]
Instantaneous Generation of Subject-Specific Finite Element Models of the Hip Capsule.

Bioengineering (Basel). 2023-12-28

[2]
Specimen-specific finite element representations of implanted hip capsules.

Comput Methods Biomech Biomed Engin. 2024-5

[3]
[Prognostic evaluation of hip joint function following capsule repair based on a threedimensional finite element analysis model].

Nan Fang Yi Ke Da Xue Xue Bao. 2020-12-30

[4]
Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies.

Biomech Model Mechanobiol. 2014-4

[5]
The capsule's contribution to total hip construct stability--a finite element analysis.

J Orthop Res. 2011-4-14

[6]
Development and calibration of a probabilistic finite element hip capsule representation.

Comput Methods Biomech Biomed Engin. 2020-8

[7]
Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.

J Biomech. 2010-2-21

[8]
Validation of finite element predictions of cartilage contact pressure in the human hip joint.

J Biomech Eng. 2008-10

[9]
Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.

Med Eng Phys. 2007-5

[10]
Implementing capsule representation in a total hip dislocation finite element model.

Iowa Orthop J. 2004

引用本文的文献

[1]
Development of a spinopelvic complex finite element model for quantitative analysis of the biomechanical response of patients with degenerative spondylolisthesis.

Med Biol Eng Comput. 2025-2

本文引用的文献

[1]
Bimodular femoral stems in primary total hip arthroplasty.

Expert Rev Med Devices. 2023

[2]
Development of a Statistical Shape Model and Assessment of Anatomical Shape Variations in the Hemipelvis.

J Clin Med. 2023-5-30

[3]
Specimen-specific finite element representations of implanted hip capsules.

Comput Methods Biomech Biomed Engin. 2024-5

[4]
The accuracy of statistical shape models in predicting bone shape: A systematic review.

Int J Med Robot. 2023-6

[5]
Probabilistic planning for ligament-balanced TKA-Identification of critical ligament properties.

Front Bioeng Biotechnol. 2022-11-17

[6]
Creation of a Total Hip Arthroplasty Patient-Specific Dislocation Risk Calculator.

J Bone Joint Surg Am. 2022-6-15

[7]
Correlation between knee anatomy and joint laxity using principal component analysis.

J Orthop Res. 2022-11

[8]
Direct Anterior Approach for Primary Total Hip Arthroplasty Lowers the Risk of Dislocation Compared to the Posterior Approach: A Single Institution Experience.

J Arthroplasty. 2022-3

[9]
Capsular ligaments provide a passive stabilizing force to protect the hip against edge loading.

Bone Joint Res. 2021-9

[10]
Robotic-arm assisted versus manual total hip arthroplasty: Systematic review and meta-analysis of radiographic accuracy.

Int J Med Robot. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索