文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

COVID-19 Detection and Diagnosis Model on CT Scans Based on AI Techniques.

作者信息

Zolya Maria-Alexandra, Baltag Cosmin, Bratu Dragoș-Vasile, Coman Simona, Moraru Sorin-Aurel

机构信息

Department of Automatics and Information Technology, Transilvania University of Brasov, 500036 Brașov, Romania.

出版信息

Bioengineering (Basel). 2024 Jan 14;11(1):79. doi: 10.3390/bioengineering11010079.


DOI:10.3390/bioengineering11010079
PMID:38247956
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10813639/
Abstract

The end of 2019 could be mounted in a rudimentary framing of a new medical problem, which globally introduces into the discussion a fulminant outbreak of coronavirus, consequently spreading COVID-19 that conducted long-lived and persistent repercussions. Hence, the theme proposed to be solved arises from the field of medical imaging, where a pulmonary CT-based standardized reporting system could be addressed as a solution. The core of it focuses on certain impediments such as the overworking of doctors, aiming essentially to solve a classification problem using deep learning techniques, namely, if a patient suffers from COVID-19, viral pneumonia, or is healthy from a pulmonary point of view. The methodology's approach was a meticulous one, denoting an empirical character in which the initial stage, given using data processing, performs an extraction of the lung cavity from the CT scans, which is a less explored approach, followed by data augmentation. The next step is comprehended by developing a CNN in two scenarios, one in which there is a binary classification (COVID and non-COVID patients), and the other one is represented by a three-class classification. Moreover, viral pneumonia is addressed. To obtain an efficient version, architectural changes were gradually made, involving four databases during this process. Furthermore, given the availability of pre-trained models, the transfer learning technique was employed by incorporating the linear classifier from our own convolutional network into an existing model, with the result being much more promising. The experimentation encompassed several models including MobileNetV1, ResNet50, DenseNet201, VGG16, and VGG19. Through a more in-depth analysis, using the CAM technique, MobilneNetV1 differentiated itself via the detection accuracy of possible pulmonary anomalies. Interestingly, this model stood out as not being among the most used in the literature. As a result, the following values of evaluation metrics were reached: loss (0.0751), accuracy (0.9744), precision (0.9758), recall (0.9742), AUC (0.9902), and F1 score (0.9750), from 1161 samples allocated for each of the three individual classes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e010880fc8f8/bioengineering-11-00079-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/a63117529c70/bioengineering-11-00079-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/2ab7c9e083bc/bioengineering-11-00079-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/d921e976fbae/bioengineering-11-00079-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/7ddb0c853f6d/bioengineering-11-00079-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e53ed371f3d9/bioengineering-11-00079-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/3f2b35aceb3c/bioengineering-11-00079-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/5163060a5580/bioengineering-11-00079-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e70e2c60515f/bioengineering-11-00079-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/b2130813a96c/bioengineering-11-00079-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/a0135f2688cf/bioengineering-11-00079-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/9aa72cf6e307/bioengineering-11-00079-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/2eb549757a7b/bioengineering-11-00079-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e010880fc8f8/bioengineering-11-00079-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/a63117529c70/bioengineering-11-00079-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/2ab7c9e083bc/bioengineering-11-00079-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/d921e976fbae/bioengineering-11-00079-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/7ddb0c853f6d/bioengineering-11-00079-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e53ed371f3d9/bioengineering-11-00079-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/3f2b35aceb3c/bioengineering-11-00079-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/5163060a5580/bioengineering-11-00079-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e70e2c60515f/bioengineering-11-00079-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/b2130813a96c/bioengineering-11-00079-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/a0135f2688cf/bioengineering-11-00079-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/9aa72cf6e307/bioengineering-11-00079-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/2eb549757a7b/bioengineering-11-00079-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff2/10813639/e010880fc8f8/bioengineering-11-00079-g013.jpg

相似文献

[1]
COVID-19 Detection and Diagnosis Model on CT Scans Based on AI Techniques.

Bioengineering (Basel). 2024-1-14

[2]
PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates.

Biomed Signal Process Control. 2023-3

[3]
Automated detection of COVID-19 from CT scan using convolutional neural network.

Biocybern Biomed Eng. 2021

[4]
CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning.

Expert Syst Appl. 2021-12-30

[5]
Development and integration of VGG and dense transfer-learning systems supported with diverse lung images for discovery of the Coronavirus identity.

Inform Med Unlocked. 2022

[6]
Hybrid COVID-19 segmentation and recognition framework (HMB-HCF) using deep learning and genetic algorithms.

Artif Intell Med. 2021-9

[7]
Covid-MANet: Multi-task attention network for explainable diagnosis and severity assessment of COVID-19 from CXR images.

Pattern Recognit. 2022-11

[8]
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI.

Healthcare (Basel). 2023-1-31

[9]
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans.

PeerJ Comput Sci. 2021-7-29

[10]
Deep-learning based detection of COVID-19 using lung ultrasound imagery.

PLoS One. 2021

引用本文的文献

[1]
Arboviruses and COVID-19: Global Health Challenges and Human Enhancement Technologies.

Bioengineering (Basel). 2025-7-1

本文引用的文献

[1]
The Diagnostic Performance of Various Clinical Specimens for the Detection of COVID-19: A Meta-Analysis of RT-PCR Studies.

Diagnostics (Basel). 2023-9-26

[2]
A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022.

Healthcare (Basel). 2023-8-24

[3]
SARS-CoV-2-Induced Myocarditis: A State-of-the-Art Review.

Viruses. 2023-4-2

[4]
COVID-19 Lung CT image segmentation using localization and enhancement methods with U-Net.

Procedia Comput Sci. 2023

[5]
A survey of machine learning-based methods for COVID-19 medical image analysis.

Med Biol Eng Comput. 2023-6

[6]
Utilisation of deep learning for COVID-19 diagnosis.

Clin Radiol. 2023-2

[7]
BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification.

Health Inf Sci Syst. 2023-1-2

[8]
Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images.

Comput Biol Med. 2023-1

[9]
A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications.

Adv Eng Softw. 2023-1

[10]
CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays.

Multimed Tools Appl. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索