Suppr超能文献

COVID-Nets:用于使用胸部CT扫描检测新冠肺炎的深度卷积神经网络架构

COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans.

作者信息

Alshazly Hammam, Linse Christoph, Abdalla Mohamed, Barth Erhardt, Martinetz Thomas

机构信息

Institut für Neuro- und Bioinformatik, University of Lübeck, Lübeck, Germany.

Faculty of Computers and Information, South Valley University, Qena, Egypt.

出版信息

PeerJ Comput Sci. 2021 Jul 29;7:e655. doi: 10.7717/peerj-cs.655. eCollection 2021.

Abstract

In this paper we propose two novel deep convolutional network architectures, CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images. The models enable transfer learning between different architectures, which might significantly boost the diagnostic performance. Whereas novel architectures usually suffer from the lack of pretrained weights, our proposed models can be partly initialized with larger baseline models like ResNet50 and DenseNet121, which is attractive because of the abundance of public repositories. The architectures are utilized in a first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects structured in a subject-wise manner into three different classes. The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and healthy samples. We also investigate their performance under three binary classification scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity, 97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification, and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity, 81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We also validated our models on the COVID19-CT dataset to differentiate COVID-19 and other non-COVID-19 viral infections, and our CovidDenseNet model achieved the best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05% specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal the effectiveness of the proposed networks in automated COVID-19 detection where they outperform standard models on the considered datasets while being more efficient.

摘要

在本文中,我们提出了两种新型深度卷积网络架构,即CovidResNet和CovidDenseNet,用于基于CT图像诊断新冠肺炎。这些模型能够在不同架构之间进行迁移学习,这可能会显著提高诊断性能。鉴于新型架构通常缺乏预训练权重,我们提出的模型可以部分地用像ResNet50和DenseNet121这样更大的基线模型进行初始化,由于有大量公共资源库,这一点很有吸引力。这些架构被用于对SARS-CoV-2 CT扫描数据集进行的首次实验研究中,该数据集包含针对210名受试者的4173张CT图像,按受试者方式分为三个不同类别。这些模型能够区分新冠肺炎、非新冠肺炎病毒性肺炎和健康样本。我们还研究了它们在三种二分类场景下的性能,即分别区分新冠肺炎与健康样本、新冠肺炎与非新冠肺炎病毒性肺炎、非新冠肺炎与健康样本。我们提出的模型在二分类中实现了高达93.87%的准确率、99.13%的精确率、92.49%的灵敏度、97.73%的特异性、95.70%的F1分数和96.80%的AUC分数,在三分类任务中实现了高达83.89%的准确率、80.36%的精确率、82.04%的灵敏度、92.07%的特异性、81.05%的F1分数和94.20%的AUC分数。我们还在COVID19-CT数据集上验证了我们的模型以区分新冠肺炎和其他非新冠肺炎病毒感染,我们的CovidDenseNet模型取得了最佳性能,准确率为81.77%、精确率为79.05%、灵敏度为84.69%、特异性为79.05%、F1分数为81.77%、AUC分数为87.50%。实验结果揭示了所提出网络在自动检测新冠肺炎方面的有效性,它们在考虑的数据集中优于标准模型,同时效率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84cd/8330434/1c0ccda68343/peerj-cs-07-655-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验