Suppr超能文献

利用参数化降阶模型实现用于种植体植入规划的数字孪生开发。

Toward Digital Twin Development for Implant Placement Planning Using a Parametric Reduced-Order Model.

作者信息

Ahn Seokho, Kim Jaesung, Baek Seokheum, Kim Cheolyong, Jang Hyunsoo, Lee Seojin

机构信息

Department of Digital Manufacturing, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea.

Department of Industry-Academic Convergence, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 Jan 16;11(1):84. doi: 10.3390/bioengineering11010084.

Abstract

Real-time stress distribution data for implants and cortical bones can aid in determining appropriate implant placement plans and improving the post-placement success rate. This study aims to achieve these goals via a parametric reduced-order model (ROM) method based on stress distribution data obtained using finite element analysis. For the first time, the finite element analysis cases for six design variables related to implant placement were determined simultaneously via the design of experiments and a sensitivity analysis. The differences between the minimum and maximum stresses obtained for the six design variables confirm that the order of their influence is: Young's modulus of the cancellous bone > implant thickness > front-rear angle > left-right angle > implant length. Subsequently, a one-dimensional (1-D) CAE solver was created using the ROM with the highest coefficient of determination and prognosis accuracy. The proposed 1-D CAE solver was loaded into the Ondemand3D program and used to implement a digital twin that can aid with dentists' decision making by combining various tooth image data to evaluate and visualize the adequacy of the placement plan in real time. Because the proposed ROM method does not rely entirely on the doctor's judgment, it ensures objectivity.

摘要

植入物和皮质骨的实时应力分布数据有助于确定合适的植入物放置方案,并提高放置后的成功率。本研究旨在通过基于使用有限元分析获得的应力分布数据的参数化降阶模型(ROM)方法来实现这些目标。首次通过实验设计和敏感性分析同时确定了与植入物放置相关的六个设计变量的有限元分析案例。六个设计变量获得的最小应力和最大应力之间的差异证实了它们的影响顺序为:松质骨的杨氏模量>植入物厚度>前后角度>左右角度>植入物长度。随后,使用具有最高决定系数和预测精度的ROM创建了一个一维(1-D)CAE求解器。将所提出的1-D CAE求解器加载到Ondemand3D程序中,并用于实现一个数字孪生模型,该模型可以通过组合各种牙齿图像数据来实时评估和可视化放置方案的充分性,从而帮助牙医进行决策。由于所提出的ROM方法并不完全依赖于医生的判断,因此它确保了客观性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d53/10813277/b2954bb4df4e/bioengineering-11-00084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验