Suppr超能文献

时间电子病历的多模态融合研究

Research on Multimodal Fusion of Temporal Electronic Medical Records.

作者信息

Ma Moxuan, Wang Muyu, Gao Binyu, Li Yichen, Huang Jun, Chen Hui

机构信息

School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao, You An Men, Fengtai District, Beijing 100069, China.

Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, No. 10, Xitoutiao, You An Men, Fengtai District, Beijing 100069, China.

出版信息

Bioengineering (Basel). 2024 Jan 18;11(1):94. doi: 10.3390/bioengineering11010094.

Abstract

The surge in deep learning-driven EMR research has centered on harnessing diverse data forms. Yet, the amalgamation of diverse modalities within time series data remains an underexplored realm. This study probes a multimodal fusion approach, merging temporal and non-temporal clinical notes along with tabular data. We leveraged data from 1271 myocardial infarction and 6450 stroke inpatients at a Beijing tertiary hospital. Our dataset encompassed static, and time series note data, coupled with static and time series table data. The temporal data underwent a preprocessing phase, padding to a 30-day interval, and segmenting into 3-day sub-sequences. These were fed into a long short-term memory (LSTM) network for sub-sequence representation. Multimodal attention gates were implemented for both static and temporal subsequence representations, culminating in fused representations. An attention-backtracking module was introduced for the latter, adept at capturing enduring dependencies in temporal fused representations. The concatenated results were channeled into an LSTM to yield the ultimate fused representation. Initially, two note modalities were designated as primary modes, and subsequently, the proposed fusion model was compared with comparative models including recent models such as Crossformer. The proposed model consistently exhibited superior predictive prowess in both tasks. Removing the attention-backtracking module led to performance decline. The proposed model consistently shows excellent predictive capabilities in both tasks. The proposed method not only effectively integrates data from the four modalities, but also has a good understanding of how to handle irregular time series data and lengthy clinical texts. An effective method is provided, which is expected to be more widely used in multimodal medical data representation.

摘要

深度学习驱动的电子病历研究热潮主要集中在利用多种数据形式。然而,时间序列数据中多种模态的融合仍是一个未被充分探索的领域。本研究探讨了一种多模态融合方法,将时间性和非时间性临床笔记与表格数据合并。我们利用了北京一家三级医院1271例心肌梗死患者和6450例中风患者的数据。我们的数据集包括静态和时间序列笔记数据,以及静态和时间序列表格数据。对时间序列数据进行预处理,填充到30天的间隔,并分割为3天的子序列。将这些数据输入长短期记忆(LSTM)网络以进行子序列表示。对静态和时间序列子序列表示都实施了多模态注意力门,最终得到融合表示。为后者引入了注意力回溯模块,该模块擅长捕捉时间融合表示中的持久依赖关系。将连接后的结果输入LSTM以产生最终的融合表示。最初,将两种笔记模态指定为主模式,随后,将所提出的融合模型与包括Crossformer等近期模型在内的对比模型进行比较。所提出的模型在两项任务中始终表现出卓越的预测能力。移除注意力回溯模块会导致性能下降。所提出的模型在两项任务中始终表现出出色的预测能力。所提出的方法不仅有效地整合了来自四种模态的数据,而且对如何处理不规则时间序列数据和冗长的临床文本有很好的理解。提供了一种有效的方法,有望在多模态医学数据表示中得到更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6c/10813197/f7205189cf43/bioengineering-11-00094-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验