IEEE J Biomed Health Inform. 2022 Nov;26(11):5518-5528. doi: 10.1109/JBHI.2022.3199594. Epub 2022 Nov 10.
Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.
利用深度学习方法从胸部 X 光片中检测胸部疾病是过去十年中一个活跃的研究领域。大多数先前的方法试图通过识别对模型预测有重要贡献的空间区域来专注于图像中的患病器官。相比之下,放射科专家首先定位明显的解剖结构,然后再确定这些区域是否异常。因此,在深度学习模型中整合解剖学知识可以显著提高自动疾病分类的效果。受此启发,我们提出了 Anatomy-XNet,这是一种基于注意力的具有解剖学意识的胸部疾病分类网络,它根据预先确定的解剖区域优先考虑空间特征。我们采用半监督学习方法,利用现有的小规模器官级注释来定位大规模数据集(其中没有器官级注释)中的解剖区域。所提出的 Anatomy-XNet 使用预先训练的 DenseNet-121 作为骨干网络,并在一个连贯的框架中使用两个对应的结构化模块,即解剖注意(A)和概率加权平均池化,用于解剖注意学习。我们的实验表明,我们的方法在三个公开的大型 CXR 数据集(NIH、斯坦福 CheXpert 和 MIMIC-CXR)上分别实现了 AUC 得分为 85.78%、92.07%和 84.04%,创下了新的技术水平。这不仅证明了利用解剖分割知识来提高胸部疾病分类效果的有效性,还证明了所提出的框架的通用性。