Cheng Yu-Kai, Lin Chih-Lung, Huang Yi-Chi, Lin Guo-Shiang, Lian Zhen-You, Chuang Cheng-Hung
Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan.
Department of Neurosurgery, Asia University Hospital, Taichung 413, Taiwan.
Diagnostics (Basel). 2024 Jan 16;14(2):191. doi: 10.3390/diagnostics14020191.
Automatically segmenting specific tissues or structures from medical images is a straightforward task for deep learning models. However, identifying a few specific objects from a group of similar targets can be a challenging task. This study focuses on the segmentation of certain specific intervertebral discs from lateral spine images acquired from an MRI scanner. In this research, an approach is proposed that utilizes MultiResUNet models and employs saliency maps for target intervertebral disc segmentation. First, a sub-image cropping method is used to separate the target discs. This method uses MultiResUNet to predict the saliency maps of target discs and crop sub-images for easier segmentation. Then, MultiResUNet is used to segment the target discs in these sub-images. The distance maps of the segmented discs are then calculated and combined with their original image for data augmentation to predict the remaining target discs. The training set and test set use 2674 and 308 MRI images, respectively. Experimental results demonstrate that the proposed method significantly enhances segmentation accuracy to about 98%. The performance of this approach highlights its effectiveness in segmenting specific intervertebral discs from closely similar discs.
对于深度学习模型来说,从医学图像中自动分割特定组织或结构是一项简单的任务。然而,从一组相似目标中识别出几个特定对象可能是一项具有挑战性的任务。本研究聚焦于从MRI扫描仪获取的脊柱侧位图像中分割某些特定的椎间盘。在这项研究中,提出了一种利用MultiResUNet模型并采用显著性图进行目标椎间盘分割的方法。首先,使用子图像裁剪方法来分离目标椎间盘。该方法使用MultiResUNet预测目标椎间盘的显著性图并裁剪子图像以便于分割。然后,使用MultiResUNet对这些子图像中的目标椎间盘进行分割。接着计算分割后椎间盘的距离图,并将其与原始图像相结合进行数据增强,以预测其余的目标椎间盘。训练集和测试集分别使用2674张和308张MRI图像。实验结果表明,所提出的方法显著提高了分割准确率,达到了约98%。该方法的性能突出了其在从非常相似的椎间盘中分割特定椎间盘方面的有效性。