Miranda Oshin, Fan Peihao, Qi Xiguang, Wang Haohan, Brannock M Daniel, Kosten Thomas R, Ryan Neal David, Kirisci Levent, Wang Lirong
Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences/School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.
School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA.
J Pers Med. 2024 Jan 14;14(1):94. doi: 10.3390/jpm14010094.
Prediction of high-risk events amongst patients with mental disorders is critical for personalized interventions. We developed DeepBiomarker2 by leveraging deep learning and natural language processing to analyze lab tests, medication use, diagnosis, social determinants of health (SDoH) parameters, and psychotherapy for outcome prediction. To increase the model's interpretability, we further refined our contribution analysis to identify key features by scaling with a factor from a reference feature. We applied DeepBiomarker2 to analyze the EMR data of 38,807 patients from the University of Pittsburgh Medical Center diagnosed with post-traumatic stress disorder (PTSD) to determine their risk of developing alcohol and substance use disorder (ASUD). DeepBiomarker2 predicted whether a PTSD patient would have a diagnosis of ASUD within the following 3 months with an average c-statistic (receiver operating characteristic AUC) of 0.93 and average F1 score, precision, and recall of 0.880, 0.895, and 0.866 in the test sets, respectively. Our study found that the medications clindamycin, enalapril, penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin, and atropine and the SDoH parameters access to psychotherapy, living in zip codes with a high normalized vegetative index, Gini index, and low-income segregation may have potential to reduce the risk of ASUDs in PTSD. In conclusion, the integration of SDoH information, coupled with the refined feature contribution analysis, empowers DeepBiomarker2 to accurately predict ASUD risk. Moreover, the model can further identify potential indicators of increased risk along with medications with beneficial effects.
预测精神障碍患者的高风险事件对于个性化干预至关重要。我们利用深度学习和自然语言处理技术开发了DeepBiomarker2,用于分析实验室检查、用药情况、诊断、健康的社会决定因素(SDoH)参数以及心理治疗,以进行结局预测。为了提高模型的可解释性,我们进一步完善了贡献分析,通过与参考特征的一个因子进行缩放来识别关键特征。我们应用DeepBiomarker2分析了匹兹堡大学医学中心38807例被诊断为创伤后应激障碍(PTSD)患者的电子病历数据,以确定他们发生酒精和物质使用障碍(ASUD)的风险。DeepBiomarker2预测一名PTSD患者在接下来3个月内是否会被诊断为ASUD,在测试集中平均c统计量(受试者工作特征曲线下面积)为0.93,平均F1分数、精准度和召回率分别为0.880、0.895和0.866。我们的研究发现,克林霉素、依那普利、青霉素、伐昔洛韦、拜瑞妥/利伐沙班、莫西沙星和阿托品等药物以及SDoH参数中的心理治疗可及性、居住在归一化植被指数高、基尼指数高和低收入隔离的邮政编码地区可能有降低PTSD患者发生ASUDs风险的潜力。总之,SDoH信息的整合,再加上完善的特征贡献分析,使DeepBiomarker2能够准确预测ASUD风险。此外,该模型还可以进一步识别风险增加的潜在指标以及具有有益作用的药物。