Suppr超能文献

使用ARIMA模型对COVID-19大流行期间结核病进行流行病学和时间序列分析及预测:来自拉贾斯坦邦楚鲁区的一项研究

Epidemiological and Time Series Analysis of Tuberculosis with Prediction during COVID-19 Pandemic using ARIMA Model: A Study from Churu District of Rajasthan.

作者信息

Singh Rajesh K, Panwar Ravi, Choudhary Kavita, Matta Shanker, Pant Ashish

机构信息

Department of Community Medicine, PDU Medical College, Churu, Rajasthan, India.

Department of Respiratory Medicine, PDU Medical College, Churu, Rajasthan, India.

出版信息

Indian J Community Med. 2023 Nov-Dec;48(6):926-929. doi: 10.4103/ijcm.ijcm_681_22. Epub 2023 Dec 1.

Abstract

As Tuberculosis (TB) is a major public health problem in India and to achieve the goal of TB elimination, it is important to assess the trend of TB cases and the impact of lockdowns and other restrictions imposed for control of COVID-19 in India on the National TB Elimination Programme. Hence, the present study aims to study the temporal trend of TB cases and assess the impact of lockdown on TB detection. A retrospective record-based study was conducted in a tertiary care institute of India. A time series analysis of TB cases from April 2018 to May 2020 was carried out. An Auto-Regressive Integrated Moving Averages (ARIMA) model was used to forecast TB cases during the lockdown period and the result was compared with actual cases detected. The statistical analysis was accomplished with R software. The time series analysis showed that the projected TB cases in April and May 2020 were 67 and 86, respectively, while the observed cases in these months were 35 and 76. The trend of TB cases during the study period showed no steady increase or decrease and the detection of TB has declined during the COVID-19 lockdown period. The TB cases peaked from April to June and males constitute the majority of TB cases.

摘要

由于结核病是印度的一个主要公共卫生问题,为实现消除结核病的目标,评估结核病病例趋势以及印度为控制新冠疫情而实施的封锁和其他限制措施对国家结核病消除计划的影响非常重要。因此,本研究旨在研究结核病病例的时间趋势,并评估封锁对结核病检测的影响。在印度的一家三级医疗机构开展了一项基于回顾性记录的研究。对2018年4月至2020年5月的结核病病例进行了时间序列分析。使用自回归积分滑动平均(ARIMA)模型预测封锁期间的结核病病例,并将结果与实际检测到的病例进行比较。使用R软件完成统计分析。时间序列分析表明,2020年4月和5月预测的结核病病例分别为67例和86例,而这两个月观察到的病例分别为35例和76例。研究期间结核病病例趋势未呈现稳定的上升或下降,在新冠疫情封锁期间结核病检测有所下降。结核病病例在4月至6月达到峰值,且男性占结核病病例的大多数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4248/10795869/7c1328923767/IJCM-48-926-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验