Suppr超能文献

基于异步 EEG 的脑机接口的运动想象分类。

Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:527-536. doi: 10.1109/TNSRE.2024.3356916. Epub 2024 Jan 26.

Abstract

Motor imagery (MI) based brain-computer interfaces (BCIs) enable the direct control of external devices through the imagined movements of various body parts. Unlike previous systems that used fixed-length EEG trials for MI decoding, asynchronous BCIs aim to detect the user's MI without explicit triggers. They are challenging to implement, because the algorithm needs to first distinguish between resting-states and MI trials, and then classify the MI trials into the correct task, all without any triggers. This paper proposes a sliding window prescreening and classification (SWPC) approach for MI-based asynchronous BCIs, which consists of two modules: a prescreening module to screen MI trials out of the resting-state, and a classification module for MI classification. Both modules are trained with supervised learning followed by self-supervised learning, which refines the feature extractors. Within-subject and cross-subject asynchronous MI classifications on four different EEG datasets validated the effectiveness of SWPC, i.e., it always achieved the highest average classification accuracy, and outperformed the best state-of-the-art baseline on each dataset by about 2%.

摘要

基于运动想象的脑-机接口(BCI)通过想象身体各个部位的运动,实现了对外部设备的直接控制。与之前使用固定长度 EEG 试验进行运动想象解码的系统不同,异步 BCI 的目的是在没有明确触发的情况下检测用户的运动想象。它们很难实现,因为算法需要首先区分静息状态和运动想象试验,然后将运动想象试验分类到正确的任务中,所有这些都不需要任何触发。本文提出了一种基于滑动窗口预筛选和分类(SWPC)的运动想象异步 BCI 方法,它由两个模块组成:一个预筛选模块,用于从静息状态中筛选出运动想象试验;一个分类模块,用于运动想象分类。这两个模块都是在监督学习之后进行自监督学习训练的,以完善特征提取器。在四个不同的 EEG 数据集上进行的基于个体的和跨个体的异步运动想象分类验证了 SWPC 的有效性,即它始终实现了最高的平均分类准确性,并且在每个数据集上都优于最佳的最先进基线,平均高出约 2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验