Institute of Health Informatics, University of Minnesota, Minneapolis, 55455, MN, USA.
Biomedical Informatics and Medical Education, University of Washington, Seattle, 98195, WA, USA.
J Biomed Inform. 2024 Feb;150:104598. doi: 10.1016/j.jbi.2024.104598. Epub 2024 Jan 20.
We aimed to investigate how errors from automatic speech recognition (ASR) systems affect dementia classification accuracy, specifically in the "Cookie Theft" picture description task. We aimed to assess whether imperfect ASR-generated transcripts could provide valuable information for distinguishing between language samples from cognitively healthy individuals and those with Alzheimer's disease (AD).
We conducted experiments using various ASR models, refining their transcripts with post-editing techniques. Both these imperfect ASR transcripts and manually transcribed ones were used as inputs for the downstream dementia classification. We conducted comprehensive error analysis to compare model performance and assess ASR-generated transcript effectiveness in dementia classification.
Imperfect ASR-generated transcripts surprisingly outperformed manual transcription for distinguishing between individuals with AD and those without in the "Cookie Theft" task. These ASR-based models surpassed the previous state-of-the-art approach, indicating that ASR errors may contain valuable cues related to dementia. The synergy between ASR and classification models improved overall accuracy in dementia classification.
Imperfect ASR transcripts effectively capture linguistic anomalies linked to dementia, improving accuracy in classification tasks. This synergy between ASR and classification models underscores ASR's potential as a valuable tool in assessing cognitive impairment and related clinical applications.
我们旨在研究自动语音识别 (ASR) 系统的错误如何影响痴呆症分类的准确性,特别是在“Cookie Theft”图片描述任务中。我们旨在评估不完美的 ASR 生成的抄本是否可以为区分认知健康个体和阿尔茨海默病 (AD) 个体的语言样本提供有价值的信息。
我们使用各种 ASR 模型进行实验,通过后编辑技术来改进它们的抄本。将这些不完美的 ASR 抄本和手动转录的抄本都用作下游痴呆症分类的输入。我们进行了全面的错误分析,以比较模型性能并评估 ASR 生成的抄本在痴呆症分类中的有效性。
令人惊讶的是,在“Cookie Theft”任务中,不完美的 ASR 生成的抄本在区分 AD 患者和非 AD 患者方面表现优于手动转录。这些基于 ASR 的模型超过了之前的最先进方法,表明 ASR 错误可能包含与痴呆症相关的有价值的线索。ASR 和分类模型之间的协同作用提高了痴呆症分类的整体准确性。
不完美的 ASR 抄本有效地捕捉到与痴呆症相关的语言异常,提高了分类任务的准确性。ASR 和分类模型之间的这种协同作用突显了 ASR 作为评估认知障碍和相关临床应用的有价值工具的潜力。