Suppr超能文献

有用的失误:自动化语音识别错误能否改善下游痴呆症分类?

Useful blunders: Can automated speech recognition errors improve downstream dementia classification?

机构信息

Institute of Health Informatics, University of Minnesota, Minneapolis, 55455, MN, USA.

Biomedical Informatics and Medical Education, University of Washington, Seattle, 98195, WA, USA.

出版信息

J Biomed Inform. 2024 Feb;150:104598. doi: 10.1016/j.jbi.2024.104598. Epub 2024 Jan 20.

Abstract

OBJECTIVES

We aimed to investigate how errors from automatic speech recognition (ASR) systems affect dementia classification accuracy, specifically in the "Cookie Theft" picture description task. We aimed to assess whether imperfect ASR-generated transcripts could provide valuable information for distinguishing between language samples from cognitively healthy individuals and those with Alzheimer's disease (AD).

METHODS

We conducted experiments using various ASR models, refining their transcripts with post-editing techniques. Both these imperfect ASR transcripts and manually transcribed ones were used as inputs for the downstream dementia classification. We conducted comprehensive error analysis to compare model performance and assess ASR-generated transcript effectiveness in dementia classification.

RESULTS

Imperfect ASR-generated transcripts surprisingly outperformed manual transcription for distinguishing between individuals with AD and those without in the "Cookie Theft" task. These ASR-based models surpassed the previous state-of-the-art approach, indicating that ASR errors may contain valuable cues related to dementia. The synergy between ASR and classification models improved overall accuracy in dementia classification.

CONCLUSION

Imperfect ASR transcripts effectively capture linguistic anomalies linked to dementia, improving accuracy in classification tasks. This synergy between ASR and classification models underscores ASR's potential as a valuable tool in assessing cognitive impairment and related clinical applications.

摘要

目的

我们旨在研究自动语音识别 (ASR) 系统的错误如何影响痴呆症分类的准确性,特别是在“Cookie Theft”图片描述任务中。我们旨在评估不完美的 ASR 生成的抄本是否可以为区分认知健康个体和阿尔茨海默病 (AD) 个体的语言样本提供有价值的信息。

方法

我们使用各种 ASR 模型进行实验,通过后编辑技术来改进它们的抄本。将这些不完美的 ASR 抄本和手动转录的抄本都用作下游痴呆症分类的输入。我们进行了全面的错误分析,以比较模型性能并评估 ASR 生成的抄本在痴呆症分类中的有效性。

结果

令人惊讶的是,在“Cookie Theft”任务中,不完美的 ASR 生成的抄本在区分 AD 患者和非 AD 患者方面表现优于手动转录。这些基于 ASR 的模型超过了之前的最先进方法,表明 ASR 错误可能包含与痴呆症相关的有价值的线索。ASR 和分类模型之间的协同作用提高了痴呆症分类的整体准确性。

结论

不完美的 ASR 抄本有效地捕捉到与痴呆症相关的语言异常,提高了分类任务的准确性。ASR 和分类模型之间的这种协同作用突显了 ASR 作为评估认知障碍和相关临床应用的有价值工具的潜力。

相似文献

1
Useful blunders: Can automated speech recognition errors improve downstream dementia classification?
J Biomed Inform. 2024 Feb;150:104598. doi: 10.1016/j.jbi.2024.104598. Epub 2024 Jan 20.
2
Explainable Alzheimer's Disease Detection Using Linguistic Features from Automatic Speech Recognition.
Dement Geriatr Cogn Disord. 2023;52(4):240-248. doi: 10.1159/000531818. Epub 2023 Jul 11.
3
Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech.
Front Aging Neurosci. 2021 Apr 27;13:635945. doi: 10.3389/fnagi.2021.635945. eCollection 2021.
4
Combining automatic speech recognition with semantic natural language processing in schizophrenia.
Psychiatry Res. 2023 Jul;325:115252. doi: 10.1016/j.psychres.2023.115252. Epub 2023 May 16.
7
Feedback From Automatic Speech Recognition to Elicit Clear Speech in Healthy Speakers.
Am J Speech Lang Pathol. 2023 Nov 6;32(6):2940-2959. doi: 10.1044/2023_AJSLP-23-00030. Epub 2023 Oct 12.
8
Automatic speech analysis for detecting cognitive decline of older adults.
Front Public Health. 2024 Aug 8;12:1417966. doi: 10.3389/fpubh.2024.1417966. eCollection 2024.
9
Automatic Speech Recognition in Primary Progressive Apraxia of Speech.
J Speech Lang Hear Res. 2024 Sep 12;67(9):2964-2976. doi: 10.1044/2024_JSLHR-24-00049. Epub 2024 Aug 6.

引用本文的文献

1
A Systematic Review of Natural Language Processing Techniques for Early Detection of Cognitive Impairment.
Mayo Clin Proc Digit Health. 2025 Mar 5;3(2):100205. doi: 10.1016/j.mcpdig.2025.100205. eCollection 2025 Jun.
2
Toward Automated Detection of Biased Social Signals from the Content of Clinical Conversations.
AMIA Annu Symp Proc. 2025 May 22;2024:252-261. eCollection 2024.

本文引用的文献

1
TRESTLE: Toolkit for Reproducible Execution of Speech, Text and Language Experiments.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:360-369. eCollection 2023.
3
The false hope of current approaches to explainable artificial intelligence in health care.
Lancet Digit Health. 2021 Nov;3(11):e745-e750. doi: 10.1016/S2589-7500(21)00208-9.
5
A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI.
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4793-4813. doi: 10.1109/TNNLS.2020.3027314. Epub 2021 Oct 27.
6
The dementia diagnosis: a literature review of information, understanding, and attributions.
Psychogeriatrics. 2015 Sep;15(3):218-25. doi: 10.1111/psyg.12095. Epub 2014 Dec 16.
7
Cohort profile: Wisconsin longitudinal study (WLS).
Int J Epidemiol. 2014 Feb;43(1):34-41. doi: 10.1093/ije/dys194.
8
The pros and cons of early diagnosis in dementia.
Br J Gen Pract. 2013 Jul;63(612):e510-2. doi: 10.3399/bjgp13X669374.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验