Suppr超能文献

基于术前变量预测心脏病患者的住院时间——贝叶斯模型与机器学习模型的比较

Predicting the Length of Stay of Cardiac Patients Based on Pre-Operative Variables-Bayesian Models vs. Machine Learning Models.

作者信息

Abdurrab Ibrahim, Mahmood Tariq, Sheikh Sana, Aijaz Saba, Kashif Muhammad, Memon Ahson, Ali Imran, Peerwani Ghazal, Pathan Asad, Alkhodre Ahmad B, Siddiqui Muhammad Shoaib

机构信息

Department of Computer Science, Institute of Business Administration, Karachi 75270, Pakistan.

Department of Clinical Research Cardiology, Tabba Heart Institute, Karachi 75950, Pakistan.

出版信息

Healthcare (Basel). 2024 Jan 18;12(2):249. doi: 10.3390/healthcare12020249.

Abstract

Length of stay (LoS) prediction is deemed important for a medical institution's operational and logistical efficiency. Sound estimates of a patient's stay increase clinical preparedness and reduce aberrations. Various statistical methods and techniques are used to quantify and predict the LoS of a patient based on pre-operative clinical features. This study evaluates and compares the results of Bayesian (simple Bayesian regression and hierarchical Bayesian regression) models and machine learning (ML) regression models against multiple evaluation metrics for the problem of LoS prediction of cardiac patients admitted to Tabba Heart Institute, Karachi, Pakistan (THI) between 2015 and 2020. In addition, the study also presents the use of hierarchical Bayesian regression to account for data variability and skewness without homogenizing the data (by removing outliers). LoS estimates from the hierarchical Bayesian regression model resulted in a root mean squared error (RMSE) and mean absolute error (MAE) of 1.49 and 1.16, respectively. Simple Bayesian regression (without hierarchy) achieved an RMSE and MAE of 3.36 and 2.05, respectively. The average RMSE and MAE of ML models remained at 3.36 and 1.98, respectively.

摘要

住院时长(LoS)预测对于医疗机构的运营和后勤效率至关重要。对患者住院时长的合理估计可提高临床准备水平并减少偏差。基于术前临床特征,人们使用了各种统计方法和技术来量化和预测患者的住院时长。本研究针对2015年至2020年间入住巴基斯坦卡拉奇塔巴心脏病研究所(THI)的心脏病患者的住院时长预测问题,根据多个评估指标评估并比较了贝叶斯模型(简单贝叶斯回归和分层贝叶斯回归)和机器学习(ML)回归模型的结果。此外,该研究还介绍了如何使用分层贝叶斯回归来考虑数据的变异性和偏度,而无需对数据进行同质化处理(通过去除异常值)。分层贝叶斯回归模型的住院时长估计结果的均方根误差(RMSE)和平均绝对误差(MAE)分别为1.49和1.16。简单贝叶斯回归(无分层)的RMSE和MAE分别为3.36和2.05。ML模型的平均RMSE和MAE分别为3.36和1.98。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4d7/10815919/82344020ce5c/healthcare-12-00249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验