Suppr超能文献

手持式眼底相机与人工智能在糖尿病视网膜病变筛查中的诊断准确性

Diagnostic Accuracy of Hand-Held Fundus Camera and Artificial Intelligence in Diabetic Retinopathy Screening.

作者信息

Tomić Martina, Vrabec Romano, Hendelja Đurđica, Kolarić Vilma, Bulum Tomislav, Rahelić Dario

机构信息

Department of Ophthalmology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4a, 10000 Zagreb, Croatia.

Department of Diabetes and Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi dol 4a, 10000 Zagreb, Croatia.

出版信息

Biomedicines. 2023 Dec 22;12(1):34. doi: 10.3390/biomedicines12010034.

Abstract

Our study aimed to assess the role of a hand-held fundus camera and artificial intelligence (AI)-based grading system in diabetic retinopathy (DR) screening and determine its diagnostic accuracy in detecting DR compared with clinical examination and a standard fundus camera. This cross-sectional instrument validation study, as a part of the International Diabetes Federation (IDF) Diabetic Retinopathy Screening Project, included 160 patients (320 eyes) with type 2 diabetes (T2DM). After the standard indirect slit-lamp fundoscopy, each patient first underwent fundus photography with a standard 45° camera VISUCAM Zeiss and then with a hand-held camera TANG (Shanghai Zhi Tang Health Technology Co., Ltd.). Two retina specialists independently graded the images taken with the standard camera, while the images taken with the hand-held camera were graded using the DeepDR system and an independent IDF ophthalmologist. The three screening methods did not differ in detecting moderate/severe nonproliferative and proliferative DR. The area under the curve, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, kappa (ĸ) agreement, diagnostic odds ratio, and diagnostic effectiveness for a hand-held camera compared to clinical examination were 0.921, 89.1%, 100%, 100%, 91.4%, infinity, 0.11, 0.86, 936.48, and 94.9%, while compared to the standard fundus camera were 0.883, 83.2%, 100%, 100%, 87.3%, infinity, 0.17, 0.78, 574.6, and 92.2%. The results of our study suggest that fundus photography with a hand-held camera and AI-based grading system is a short, simple, and accurate method for the screening and early detection of DR, comparable to clinical examination and fundus photography with a standard camera.

摘要

我们的研究旨在评估手持眼底相机和基于人工智能(AI)的分级系统在糖尿病视网膜病变(DR)筛查中的作用,并确定其与临床检查和标准眼底相机相比在检测DR方面的诊断准确性。作为国际糖尿病联盟(IDF)糖尿病视网膜病变筛查项目的一部分,这项横断面仪器验证研究纳入了160例2型糖尿病(T2DM)患者(320只眼)。在进行标准间接检眼镜检查后,每位患者首先使用标准的45°蔡司VISUCAM相机进行眼底摄影,然后使用手持相机TANG(上海之堂健康科技有限公司)进行眼底摄影。两位视网膜专家独立对标准相机拍摄的图像进行分级,而手持相机拍摄的图像则使用DeepDR系统并由一名独立的IDF眼科医生进行分级。在检测中度/重度非增殖性和增殖性DR方面,这三种筛查方法没有差异。与临床检查相比,手持相机的曲线下面积、灵敏度、特异性、阳性预测值、阴性预测值、阳性似然比、阴性似然比、kappa(κ)一致性、诊断比值比和诊断效能分别为0.921、89.1%、100%、100%、91.4%、无穷大、0.11、0.86、936.48和94.9%,与标准眼底相机相比分别为0.883、83.2%、100%、100%、87.3%、无穷大、0.17、0.78、574.6和92.2%。我们的研究结果表明,使用手持相机和基于AI的分级系统进行眼底摄影是一种用于DR筛查和早期检测的简短、简单且准确的方法,与临床检查和使用标准相机进行眼底摄影相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a5f/10813433/21a353823b56/biomedicines-12-00034-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验