Suppr超能文献

整合数据与预测模型以评估城市环境中的空气质量和噪音

Integration of Data and Predictive Models for the Evaluation of Air Quality and Noise in Urban Environments.

作者信息

Govea Jaime, Gaibor-Naranjo Walter, Sanchez-Viteri Santiago, Villegas-Ch William

机构信息

Escuela de Ingeniería en Ciberseguridad, Faculatad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador.

Carrera de Ciencias de la Computación, Universidad Politécnica Salesiana, Quito 170105, Ecuador.

出版信息

Sensors (Basel). 2024 Jan 5;24(2):311. doi: 10.3390/s24020311.

Abstract

This work addresses assessing air quality and noise in urban environments by integrating predictive models and Internet of Things technologies. For this, a model generated heat maps for PM2.5 and noise levels, incorporating traffic data from open sources for precise contextualization. This approach reveals significant correlations between high pollutant/noise concentrations and their proximity to industrial zones and traffic routes. The predictive models, including convolutional neural networks and decision trees, demonstrated high accuracy in predicting pollution and noise levels, with correlation values such as R2 of 0.93 for PM2.5 and 0.90 for noise. These findings highlight the need to address environmental issues in urban planning comprehensively. Furthermore, the study suggests policies based on the quantitative results, such as implementing low-emission zones and promoting green spaces, to improve urban environmental management. This analysis offers a significant contribution to scientific understanding and practical applicability in the planning and management of urban environments, emphasizing the relevance of an integrated and data-driven approach to inform effective policy decisions in urban environmental management.

摘要

这项工作通过整合预测模型和物联网技术来评估城市环境中的空气质量和噪音。为此,一个模型生成了PM2.5和噪音水平的热图,并纳入了来自开源的交通数据以进行精确的情境化。这种方法揭示了高污染物/噪音浓度与其靠近工业区和交通路线之间的显著相关性。包括卷积神经网络和决策树在内的预测模型在预测污染和噪音水平方面表现出高精度,PM2.5的R2等相关值为0.93,噪音的相关值为0.90。这些发现凸显了在城市规划中全面解决环境问题的必要性。此外,该研究建议基于定量结果制定政策,例如实施低排放区和推广绿地,以改善城市环境管理。该分析为城市环境规划和管理中的科学理解和实际应用做出了重大贡献,强调了采用综合和数据驱动方法为城市环境管理中的有效政策决策提供信息的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668c/10820565/2fbf716f1091/sensors-24-00311-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验