Liu Jie, Sun Shiman, Tang Ke, Fan Xinyu, Lv Jihong, Fu Yinxiang, Feng Xinpu, Zeng Liang
Chongqing Airport Group Co., Ltd., Chongqing 401120, China.
Civil Aviation Research Base (Beijing) Co., Ltd., Beijing 100621, China.
Sensors (Basel). 2025 Apr 8;25(8):2347. doi: 10.3390/s25082347.
With the acceleration of global urbanization, airport noise pollution has emerged as a significant environmental concern that demands attention. Traditional airport noise monitoring systems are fraught with limitations, including restricted spatial coverage, inadequate real-time data acquisition capabilities, poor data correlation, and suboptimal cost-effectiveness. To address these challenges, this paper proposes an innovative airport noise perception and monitoring approach leveraging Internet of Things (IoT) technology. This method integrates multiple data streams, encompassing noise, meteorological, and ADS-B data, to achieve precise noise event tracing and deep multi-source data fusion. Furthermore, this study employs Kriging interpolation and Inverse Distance Weighting (IDW) techniques to perform spatial interpolation on data from sparse monitoring sites, thereby constructing a spatial distribution model of airport noise. The results of the practical application demonstrate that the proposed airport noise monitoring method can accurately reflect the spatiotemporal distribution patterns of airport noise and effectively correlate noise events, thereby providing robust data support for the development of airport noise control policies.
随着全球城市化进程的加速,机场噪声污染已成为一个需要关注的重大环境问题。传统的机场噪声监测系统存在诸多局限性,包括空间覆盖范围有限、实时数据采集能力不足、数据相关性差以及成本效益不理想等。为应对这些挑战,本文提出一种利用物联网(IoT)技术的创新型机场噪声感知与监测方法。该方法整合了多个数据流,包括噪声、气象和ADS - B数据,以实现精确的噪声事件追踪和深度多源数据融合。此外,本研究采用克里金插值法和反距离加权(IDW)技术对稀疏监测站点的数据进行空间插值,从而构建机场噪声的空间分布模型。实际应用结果表明,所提出的机场噪声监测方法能够准确反映机场噪声的时空分布模式,并有效关联噪声事件,从而为机场噪声控制政策的制定提供有力的数据支持。