Suppr超能文献

整合多源数据用于航空噪声预测:一种混合CNN-BiLSTM-注意力模型方法

Integrating Multi-Source Data for Aviation Noise Prediction: A Hybrid CNN-BiLSTM-Attention Model Approach.

作者信息

Fu Yinxiang, Sun Shiman, Liu Jie, Xu Wenjian, Shao Meiqi, Fan Xinyu, Lv Jihong, Feng Xinpu, Tang Ke

机构信息

Chongqing Airport Group Co., Ltd., Chongqing 401120, China.

Civil Aviation Research Base (Beijing) Co., Ltd., Beijing 100621, China.

出版信息

Sensors (Basel). 2025 Aug 15;25(16):5085. doi: 10.3390/s25165085.

Abstract

Driven by the increasing global population and rapid urbanization, aircraft noise pollution has emerged as a significant environmental challenge, impeding the sustainable development of the aviation industry. Traditional noise prediction methods are limited by incomplete datasets, insufficient spatiotemporal consistency, and poor adaptability to complex meteorological conditions, making it difficult to achieve precise noise management. To address these limitations, this study proposes a novel noise prediction framework based on a hybrid Convolutional Neural Network-Bidirectional Long Short-Term Memory-Attention (CNN-BiLSTM-Attention) model. By integrating multi-source data, including meteorological parameters (e.g., temperature, humidity, wind speed) and aircraft trajectory data (e.g., altitude, longitude, latitude), the framework achieves high-precision prediction of aircraft noise. The Haversine formula and inverse distance weighting (IDW) interpolation are employed to effectively supplement missing data, while spatiotemporal alignment techniques ensure data consistency. The CNN-BiLSTM-Attention model leverages the spatial feature extraction capabilities of CNNs, the bidirectional temporal sequence processing capabilities of BiLSTMs, and the context-enhancing properties of the attention mechanism to capture the spatiotemporal characteristics of noise. The experimental results indicate that the model's predicted mean value of 68.66 closely approximates the actual value of 68.16, with a minimal difference of 0.5 and a mean absolute error of 0.89%. Notably, the error remained below 2% in 91.4% of the prediction rounds. Furthermore, ablation studies revealed that the complete CNN-BiLSTM-AM model significantly outperformed single-structure models. The incorporation of the attention mechanism was found to markedly enhance both the accuracy and generalization capability of the model. These findings highlight the model's robust performance and reliability in predicting aviation noise. This study provides a scientific basis for effective aviation noise management and offers an innovative solution for addressing noise prediction problems under data-scarce conditions.

摘要

在全球人口增长和快速城市化的推动下,飞机噪声污染已成为一项重大的环境挑战,阻碍了航空业的可持续发展。传统噪声预测方法受到数据集不完整、时空一致性不足以及对复杂气象条件适应性差的限制,难以实现精确的噪声管理。为解决这些局限性,本研究提出了一种基于混合卷积神经网络-双向长短期记忆-注意力(CNN-BiLSTM-注意力)模型的新型噪声预测框架。通过整合多源数据,包括气象参数(如温度、湿度、风速)和飞机轨迹数据(如高度、经度、纬度),该框架实现了飞机噪声的高精度预测。采用哈弗辛公式和反距离加权(IDW)插值有效地补充缺失数据,同时时空对齐技术确保数据一致性。CNN-BiLSTM-注意力模型利用卷积神经网络的空间特征提取能力、双向长短期记忆的双向时间序列处理能力以及注意力机制的上下文增强特性来捕捉噪声的时空特征。实验结果表明,该模型的预测平均值68.66与实际值68.16非常接近,最小差值为0.5,平均绝对误差为0.89%。值得注意的是,在91.4%的预测轮次中误差保持在2%以下。此外,消融研究表明,完整的CNN-BiLSTM-注意力模型明显优于单结构模型。发现注意力机制的加入显著提高了模型的准确性和泛化能力。这些发现突出了该模型在预测航空噪声方面的强大性能和可靠性。本研究为有效的航空噪声管理提供了科学依据,并为解决数据稀缺条件下的噪声预测问题提供了创新解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4b4/12390125/71b51fd940b2/sensors-25-05085-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验