Suppr超能文献

用于驾驶员疲劳监测的动态跨域迁移学习:具有自适应实时个性化的多模态传感器融合

Dynamic cross-domain transfer learning for driver fatigue monitoring: multi-modal sensor fusion with adaptive real-time personalizations.

作者信息

Aravinth S S, Nagamani G Muni, Kumar Chanumolu Kiran, Lasisi Ayodele, Naveed Quadri Noorulhasan, Bhowmik A, Khan Wahaj Ahmad

机构信息

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, 522502, India.

Department of computer science & engineering, Andhra Loyola Institute of Engineering and Technology, Vijayawada, Andhra Pradesh, 520008, India.

出版信息

Sci Rep. 2025 May 6;15(1):15840. doi: 10.1038/s41598-025-92701-6.

Abstract

Driver fatigue is one of the most common causes of road accidents, which means that there is a great need for robust and adaptive monitoring systems. Current models of fatigue detection suffer from domain-specific limitations in generalizing across diverse environments, sensor variability, and individual differences. Moreover, they are not resilient to real-time sensor quality issues or missing data, which limits their practical applicability. To overcome the aforementioned challenges, we propose a holistic Dynamic Cross-Domain Transfer Learning framework for fatigue monitoring application using multi-modal sensor data fusion. There are four innovations involved with this framework. Firstly, the domain adversarial neural network in EEG, ECG, and video inputs ensures cross-domain invariance of features. The gap of adaptation at the domain goes below 5%, while there is an improvement of the cross-domain accuracy to as high as 15% from 10%. The ASF-Transformer uses adaptive cross-modal attention for fusing heterogeneous sensor data effectively. Accuracy improves by 5-8% and remains robust under modality dropout conditions. Third, the GMSN dynamically evaluates sensor quality and selectively enables modalities to mitigate performance drops to < 5% even with noisy or missing inputs in process. Fourth, Online Personalized Fine-Tuning (OPFT) allows for real-time adaptation of the model to individual drivers, achieving an improvement in accuracy by 5-7% within 2 h with a latency of < 50ms. Thorough evaluations show that the framework can achieve 85-90% accuracy on target domains while maintaining robustness under 20% sensor dropout. Addressing the issue of domain variability, sensor quality, and personalization, this work has improved the reliability, adaptability, and real-time feasibility of fatigue monitoring systems to provide significant advancements for driver safety in dynamic real-world environments.

摘要

驾驶员疲劳是道路交通事故最常见的原因之一,这意味着对强大且自适应的监测系统有巨大需求。当前的疲劳检测模型在跨不同环境、传感器变异性和个体差异进行泛化时存在特定领域的局限性。此外,它们对实时传感器质量问题或数据缺失缺乏弹性,这限制了它们的实际适用性。为了克服上述挑战,我们提出了一个整体的动态跨域迁移学习框架,用于使用多模态传感器数据融合的疲劳监测应用。该框架涉及四项创新。首先,脑电图、心电图和视频输入中的域对抗神经网络确保了特征的跨域不变性。域适应差距降至5%以下,同时跨域准确率从10%提高到高达15%。ASF-Transformer使用自适应跨模态注意力有效地融合异构传感器数据。准确率提高了5-8%,并且在模态丢失条件下仍保持稳健。第三,GMSN动态评估传感器质量并选择性地启用模态,即使在处理过程中存在噪声或输入缺失的情况下,也能将性能下降减轻至<5%。第四,在线个性化微调(OPFT)允许模型实时适应个体驾驶员,在2小时内实现5-7%的准确率提高,延迟<50毫秒。全面评估表明,该框架在目标域上可以达到85-90%的准确率,同时在20%传感器丢失的情况下保持稳健性。这项工作解决了域变异性、传感器质量和个性化问题,提高了疲劳监测系统的可靠性、适应性和实时可行性,为动态现实世界环境中的驾驶员安全提供了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eef/12056195/a43de9331049/41598_2025_92701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验