Kang Jeon-Woong, Jeon Jinpyo, Lee Jun-Young, Jeon Jun-Hyeong, Hong Jiwoo
School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea.
Micromachines (Basel). 2023 Dec 28;15(1):61. doi: 10.3390/mi15010061.
In recent times, the utilization of three-dimensional (3D) printing technology, particularly a variant using digital light processing (DLP), has gained increasing fascination in the realm of microfluidic research because it has proven advantageous and expedient for constructing microscale 3D structures. The surface wetting characteristics (e.g., contact angle and contact angle hysteresis) of 3D-printed microstructures are crucial factors influencing the operational effectiveness of 3D-printed microfluidic devices. Therefore, this study systematically examines the surface wetting characteristics of DLP-based 3D printing objects, focusing on various printing conditions such as lamination (or layer) thickness and direction. We preferentially examine the impact of lamination thickness on the surface roughness of 3D-printed structures through a quantitative assessment using a confocal laser scanning microscope. The influence of lamination thicknesses and lamination direction on the contact angle and contact angle hysteresis of both aqueous and oil droplets on the surfaces of 3D-printed outputs is then quantified. Finally, the performance of a DLP 3D-printed microfluidic device under various printing conditions is assessed. Current research indicates a connection between printing parameters, surface roughness, wetting properties, and capillary movement in 3D-printed microchannels. This correlation will greatly aid in the progress of microfluidic devices produced using DLP-based 3D printing technology.
近年来,三维(3D)打印技术的应用,特别是采用数字光处理(DLP)的一种变体,在微流体研究领域越来越受到关注,因为它已被证明在构建微尺度3D结构方面具有优势且便捷。3D打印微结构的表面润湿性特征(如接触角和接触角滞后)是影响3D打印微流体装置运行效率的关键因素。因此,本研究系统地研究了基于DLP的3D打印物体的表面润湿性特征,重点关注各种打印条件,如层压(或层)厚度和方向。我们优先通过使用共聚焦激光扫描显微镜进行定量评估,研究层压厚度对3D打印结构表面粗糙度的影响。然后量化层压厚度和层压方向对3D打印输出表面上水滴和油滴的接触角和接触角滞后的影响。最后,评估了基于DLP的3D打印微流体装置在各种打印条件下的性能。当前研究表明了3D打印微通道中打印参数、表面粗糙度、润湿性和毛细管运动之间的联系。这种相关性将极大地有助于使用基于DLP的3D打印技术生产的微流体装置的发展。