Suppr超能文献

用于微流控器件制造的不同打印条件下基于数字光处理(DLP)的3D打印成果的表面润湿性特征

Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication.

作者信息

Kang Jeon-Woong, Jeon Jinpyo, Lee Jun-Young, Jeon Jun-Hyeong, Hong Jiwoo

机构信息

School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea.

出版信息

Micromachines (Basel). 2023 Dec 28;15(1):61. doi: 10.3390/mi15010061.

Abstract

In recent times, the utilization of three-dimensional (3D) printing technology, particularly a variant using digital light processing (DLP), has gained increasing fascination in the realm of microfluidic research because it has proven advantageous and expedient for constructing microscale 3D structures. The surface wetting characteristics (e.g., contact angle and contact angle hysteresis) of 3D-printed microstructures are crucial factors influencing the operational effectiveness of 3D-printed microfluidic devices. Therefore, this study systematically examines the surface wetting characteristics of DLP-based 3D printing objects, focusing on various printing conditions such as lamination (or layer) thickness and direction. We preferentially examine the impact of lamination thickness on the surface roughness of 3D-printed structures through a quantitative assessment using a confocal laser scanning microscope. The influence of lamination thicknesses and lamination direction on the contact angle and contact angle hysteresis of both aqueous and oil droplets on the surfaces of 3D-printed outputs is then quantified. Finally, the performance of a DLP 3D-printed microfluidic device under various printing conditions is assessed. Current research indicates a connection between printing parameters, surface roughness, wetting properties, and capillary movement in 3D-printed microchannels. This correlation will greatly aid in the progress of microfluidic devices produced using DLP-based 3D printing technology.

摘要

近年来,三维(3D)打印技术的应用,特别是采用数字光处理(DLP)的一种变体,在微流体研究领域越来越受到关注,因为它已被证明在构建微尺度3D结构方面具有优势且便捷。3D打印微结构的表面润湿性特征(如接触角和接触角滞后)是影响3D打印微流体装置运行效率的关键因素。因此,本研究系统地研究了基于DLP的3D打印物体的表面润湿性特征,重点关注各种打印条件,如层压(或层)厚度和方向。我们优先通过使用共聚焦激光扫描显微镜进行定量评估,研究层压厚度对3D打印结构表面粗糙度的影响。然后量化层压厚度和层压方向对3D打印输出表面上水滴和油滴的接触角和接触角滞后的影响。最后,评估了基于DLP的3D打印微流体装置在各种打印条件下的性能。当前研究表明了3D打印微通道中打印参数、表面粗糙度、润湿性和毛细管运动之间的联系。这种相关性将极大地有助于使用基于DLP的3D打印技术生产的微流体装置的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2bf/10820386/f19e2bad1c92/micromachines-15-00061-g001.jpg

相似文献

2
Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
Biosensors (Basel). 2024 Jun 8;14(6):301. doi: 10.3390/bios14060301.
3
3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
Materials (Basel). 2023 Oct 31;16(21):6984. doi: 10.3390/ma16216984.
4
Characterization of PDMS Microchannels Using Horizontally or Vertically Formed 3D-Printed Molds by Digital Light Projection.
ACS Omega. 2023 May 18;8(21):19128-19136. doi: 10.1021/acsomega.3c02933. eCollection 2023 May 30.
5
Study of Forming Performance and Characterization of DLP 3D Printed Parts.
Materials (Basel). 2023 May 19;16(10):3847. doi: 10.3390/ma16103847.
7
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
PLoS One. 2020 Oct 28;15(10):e0240237. doi: 10.1371/journal.pone.0240237. eCollection 2020.
8
Effects of layer thickness and build angle on the microbial adhesion of denture base polymers manufactured by digital light processing.
J Prosthodont Res. 2023 Oct 13;67(4):562-567. doi: 10.2186/jpr.JPR_D_22_00126. Epub 2023 Feb 18.
9
3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
Anal Chem. 2021 Jan 12;93(1):350-366. doi: 10.1021/acs.analchem.0c04672. Epub 2020 Dec 2.
10
Effect of layer thickness and printing orientation on the color stability and stainability of a 3D-printed resin material.
J Prosthet Dent. 2022 May;127(5):784.e1-784.e7. doi: 10.1016/j.prosdent.2022.01.024. Epub 2022 Feb 25.

引用本文的文献

2
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.
J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.
3
Editorial for the Special Issue on Advanced Micro- and Nano-Manufacturing Technologies.
Micromachines (Basel). 2024 Dec 8;15(12):1479. doi: 10.3390/mi15121479.

本文引用的文献

1
Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems.
Adv Mater. 2023 Nov;35(47):e2303867. doi: 10.1002/adma.202303867. Epub 2023 Oct 12.
2
Study of Forming Performance and Characterization of DLP 3D Printed Parts.
Materials (Basel). 2023 May 19;16(10):3847. doi: 10.3390/ma16103847.
3
3D-printed capillaric ELISA-on-a-chip with aliquoting.
Lab Chip. 2023 Mar 14;23(6):1547-1560. doi: 10.1039/d2lc00878e.
4
A miniaturized passive sampling-based workflow for monitoring chemicals of emerging concern in water.
Sci Total Environ. 2022 Sep 15;839:156260. doi: 10.1016/j.scitotenv.2022.156260. Epub 2022 May 26.
5
A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts.
Microsyst Nanoeng. 2019 Dec 30;5:64. doi: 10.1038/s41378-019-0116-8. eCollection 2019.
7
3D Printing of Monolithic Capillarity-Driven Microfluidic Devices for Diagnostics.
Adv Mater. 2021 Jun;33(25):e2008712. doi: 10.1002/adma.202008712. Epub 2021 May 10.
8
Effects of printing layer thickness on mechanical properties of 3D-printed custom trays.
J Prosthet Dent. 2021 Nov;126(5):671.e1-671.e7. doi: 10.1016/j.prosdent.2020.08.025. Epub 2020 Dec 2.
10
Photo-curing 3D printing technique and its challenges.
Bioact Mater. 2020 Jan 22;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003. eCollection 2020 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验