Suppr超能文献

具有梯度等离子体纳米粒子的复合材料之间近场热辐射的增强

Enhancement of near-field thermal radiation between composite materials with gradient plasmonic nanoparticles.

作者信息

Ge Wen-Xuan, Ogundare Rasheed Toyin, Gao Lei

机构信息

School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

School of Optical and Electronic Information, Suzhou City University & Suzhou Key Laboratory of Biophotonics, Suzhou 215104, China.

出版信息

Phys Chem Chem Phys. 2024 Feb 7;26(6):5020-5026. doi: 10.1039/d3cp05681c.

Abstract

Near-field radiative heat transfer (NFRHT) with composite materials is of significant technological interest for practical applications. In this study, we investigate the NFRHT occurring between two composite materials composed of gradient plasmonic nanoparticles (GPNs). We delve into the physical mechanism underlying NFRHT, highlighting the strong coupling and enhancement effect from surface plasmon polaritons (SPPs) at the composite/air interface or the localized SPPs (LSPPs) on the surface of nanoparticles. Furthermore, leveraging the red-shift effect caused by the gradient profile, the intensity of NFRHT can be controlled by adjusting the gradient function and volume fraction of GPNs. Notably, we observe the enhancement of NFRHT from composite materials to bulk materials, with the enhancement ratio exhibiting a notable increase at large spacing. This research establishes a theoretical foundation for the development of near-field thermal devices utilizing composite materials containing GPNs.

摘要

复合材料的近场辐射热传递(NFRHT)在实际应用中具有重大的技术意义。在本研究中,我们研究了由梯度等离子体纳米颗粒(GPN)组成的两种复合材料之间发生的近场辐射热传递。我们深入探讨了近场辐射热传递背后的物理机制,强调了在复合材料/空气界面处的表面等离激元极化激元(SPP)或纳米颗粒表面的局域表面等离激元(LSPP)产生的强耦合和增强效应。此外,利用梯度分布引起的红移效应,可以通过调整GPN的梯度函数和体积分数来控制近场辐射热传递的强度。值得注意的是,我们观察到从复合材料到块状材料的近场辐射热传递增强,在大间距时增强比显著增加。本研究为利用含GPN的复合材料开发近场热器件奠定了理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验