Suppr超能文献

气道系统进化多样性的丧失与慢性阻塞性肺疾病的临床和病理生物学标志物的发展有关。

Loss of Airway Phylogenetic Diversity Is Associated with Clinical and Pathobiological Markers of Disease Development in Chronic Obstructive Pulmonary Disease.

机构信息

Department of Medicine, Division of Pulmonary and Critical Care Medicine.

Department of Biostatistics, School of Public Health.

出版信息

Am J Respir Crit Care Med. 2024 Jul 15;210(2):186-200. doi: 10.1164/rccm.202303-0489OC.

Abstract

The airway microbiome has the potential to shape chronic obstructive pulmonary disease (COPD) pathogenesis, but its relationship to outcomes in milder disease is unestablished. To identify sputum microbiome characteristics associated with markers of COPD in participants of the Subpopulations and Intermediate Outcome Measures of COPD Study (SPIROMICS). Sputum DNA from 877 participants was analyzed using 16S ribosomal RNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic, and mucoinflammatory markers, including longitudinal lung function trajectory, were examined. Participant data represented predominantly milder disease (Global Initiative for Chronic Obstructive Lung Disease stage 0-2 obstruction in 732 of 877 participants). Phylogenetic diversity (i.e., range of different species within a sample) correlated positively with baseline lung function, decreased with higher Global Initiative for Chronic Obstructive Lung Disease stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations ( < 0.001). In covariate-adjusted regression models, organisms robustly associated with better lung function included , , and species. Conversely, lower lung function, greater symptoms, and radiographic measures of small airway disease were associated with enrichment in members of , , , and other genera. Baseline sputum microbiota features were also associated with lung function trajectory during SPIROMICS follow-up (stable/improved, decline, or rapid decline groups). The stable/improved group (slope of FEV regression ⩾66th percentile) had greater bacterial diversity at baseline associated with enrichment in , , and species. In contrast, the rapid decline group (FEV slope ⩽33rd percentile) had significantly lower baseline diversity associated with enrichment in species. In SPIROMICS, baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

摘要

气道微生物组有可能影响慢性阻塞性肺疾病(COPD)的发病机制,但它与更轻度疾病的结果的关系尚未确定。为了确定与COPD 研究的亚人群和中间结果测量(SPIROMICS)参与者中 COPD 标志物相关的痰微生物组特征。使用 16S 核糖体 RNA 基因测序分析了 877 名参与者的痰 DNA。检查了基线气道微生物群落组成与临床,放射学和粘蛋白炎症标志物(包括纵向肺功能轨迹)之间的关系。参与者数据主要代表更轻度的疾病(877 名参与者中有 732 名患有全球慢性阻塞性肺病倡议 0-2 期阻塞)。系统发育多样性(即在样本中不同物种的范围)与基线肺功能呈正相关,与更高的全球慢性阻塞性肺病倡议阶段呈负相关,与症状负担,气道疾病的放射学标志物和总粘蛋白浓度呈负相关(<0.001)。在协变量调整的回归模型中,与更好的肺功能相关的生物体包括 , , 和 种。相反,较低的肺功能,更多的症状和小气道疾病的放射学指标与 , , ,和其他属成员的丰度增加相关。基线痰微生物组特征也与 SPIROMICS 随访期间的肺功能轨迹相关(稳定/改善,下降或快速下降组)。稳定/改善组(FEV 回归斜率≥66 百分位数)在基线时具有更高的细菌多样性,与 , , 和 种的富集相关。相比之下,快速下降组(FEV 斜率≤33 百分位数)的基线多样性明显较低,与 种的富集相关。在 SPIROMICS 中,基线气道微生物组特征与 COPD 相关结局的改善或恶化具有不同的关联。

相似文献

6
Phenotypes and Trajectories of Tobacco-exposed Persons with Preserved Spirometry: Insights from Lung Volumes.
Ann Am Thorac Soc. 2025 Apr;22(4):494-505. doi: 10.1513/AnnalsATS.202405-527OC.
7
Sputum production and salivary microbiome in COVID-19 patients reveals oral-lung axis.
PLoS One. 2024 Jul 25;19(7):e0300408. doi: 10.1371/journal.pone.0300408. eCollection 2024.
8
Airway tree caliber heterogeneity and airflow obstruction among older adults.
J Appl Physiol (1985). 2024 May 1;136(5):1144-1156. doi: 10.1152/japplphysiol.00694.2022. Epub 2024 Feb 29.
9
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
10
Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 Sep 19;9(9):CD002309. doi: 10.1002/14651858.CD002309.pub5.

引用本文的文献

1
Microbial Dysbiosis in the Lung and Gut in Response to Inhalable Particulate Matters in Pneumoconiosis Patients and Animals.
Environ Sci Technol. 2025 Jun 10;59(22):10826-10840. doi: 10.1021/acs.est.5c00798. Epub 2025 May 29.
2
The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations.
Immunol Rev. 2025 Mar;330(1):e70015. doi: 10.1111/imr.70015.
3
Microbial Buffer? The Human Lung Microbiome and Immune Responses to Diesel Exhaust.
Environ Health Perspect. 2024 Jul;132(7):74002. doi: 10.1289/EHP15252. Epub 2024 Jul 29.
4
Infection and the microbiome in bronchiectasis.
Eur Respir Rev. 2024 Jul 3;33(173). doi: 10.1183/16000617.0038-2024. Print 2024 Jul.
6
7
Of Mucus and Microbes: The Sticky Issue of Mucin-Microbiome Interactions in Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2024 Aug 1;210(3):252-253. doi: 10.1164/rccm.202403-0506ED.
8
Unsung Heroes? Decoding the Protective Effects of Airway Microbiota in Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2024 Jul 15;210(2):136-138. doi: 10.1164/rccm.202401-0189ED.

本文引用的文献

1
MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data.
Nucleic Acids Res. 2023 Jul 5;51(W1):W310-W318. doi: 10.1093/nar/gkad407.
2
Characterizing the mucin-degrading capacity of the human gut microbiota.
Sci Rep. 2022 May 19;12(1):8456. doi: 10.1038/s41598-022-11819-z.
4
5
RESCRIPt: Reproducible sequence taxonomy reference database management.
PLoS Comput Biol. 2021 Nov 8;17(11):e1009581. doi: 10.1371/journal.pcbi.1009581. eCollection 2021 Nov.
6
is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease.
Eur Respir J. 2022 May 5;59(5). doi: 10.1183/13993003.01293-2021. Print 2022 May.
8
Lung microbiota associations with clinical features of COPD in the SPIROMICS cohort.
NPJ Biofilms Microbiomes. 2021 Feb 5;7(1):14. doi: 10.1038/s41522-021-00185-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验