Kumari Prachi, Wunderlich Hannah, Milojkovic Aleksandra, López Jorge Estudillo, Fossati Arianna, Jahanshahi Ali, Kozielski Kristen
Professorship of Neuroengineering Materials, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany.
Department of Electronics and Information, Politecnico di Milano, Milano, 20133, Italy.
Adv Healthc Mater. 2024 Sep;13(24):e2302871. doi: 10.1002/adhm.202302871. Epub 2024 Feb 13.
The growing field of nanoscale neural stimulators offers a potential alternative to larger scale electrodes for brain stimulation. Nanoelectrodes made of magnetoelectric nanoparticles (MENPs) can provide an alternative to invasive electrodes for brain stimulation via magnetic-to-electric signal transduction. However, the magnetoelectric effect is a complex phenomenon and challenging to probe experimentally. Consequently, quantifying the stimulation voltage provided by MENPs is difficult, hindering precise regulation and control of neural stimulation and limiting their practical implementation as wireless nanoelectrodes. The work herein develops an approach to determine the stimulation voltage for MENPs in a finite element analysis (FEA) model. This model is informed by atomistic material properties from ab initio Density Functional Theory (DFT) calculations and supplemented by experimentally obtainable nanoscale parameters. This process overcomes the need for experimentally inaccessible characteristics for magnetoelectricity, and offers insights into the effect of the more manageable variables, such as the driving magnetic field. The model's voltage is compared to in vivo experimental data to assess its validity. With this, a predictable and controllable stimulation is simulated by MENPs, computationally substantiating their spatial selectivity. This work proposes a generalizable and accessible method for evaluating the stimulation capability of magnetoelectric nanostructures, facilitating their realization as wireless neural stimulators in the future.
纳米级神经刺激器这一不断发展的领域为大脑刺激提供了一种替代较大规模电极的潜在选择。由磁电纳米颗粒(MENP)制成的纳米电极可以通过磁电信号转导为侵入性电极用于大脑刺激提供一种替代方案。然而,磁电效应是一种复杂的现象,在实验上进行探究具有挑战性。因此,量化MENP提供的刺激电压很困难,这阻碍了对神经刺激的精确调节和控制,并限制了它们作为无线纳米电极的实际应用。本文的工作开发了一种在有限元分析(FEA)模型中确定MENP刺激电压的方法。该模型由来自从头算密度泛函理论(DFT)计算的原子材料特性提供信息,并由实验可获得的纳米级参数补充。这个过程克服了对磁电实验上难以获取的特性的需求,并提供了对更易于管理的变量(如驱动磁场)的影响的见解。将模型的电压与体内实验数据进行比较以评估其有效性。由此,通过MENP模拟了可预测和可控的刺激,在计算上证实了它们的空间选择性。这项工作提出了一种可推广且易于使用的方法来评估磁电纳米结构的刺激能力,有助于它们在未来实现为无线神经刺激器。
Front Bioeng Biotechnol. 2023-8-25
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-3
Acc Chem Res. 2024-10-15
Brain Stimul. 2024
Nanoscale Horiz. 2025-3-24