Suppr超能文献

利用磁电纳米颗粒控制动作电位。

Controlling action potentials with magnetoelectric nanoparticles.

机构信息

Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.

Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.

出版信息

Brain Stimul. 2024 Sep-Oct;17(5):1005-1017. doi: 10.1016/j.brs.2024.08.008. Epub 2024 Aug 30.

Abstract

Non-invasive or minutely invasive and wireless brain stimulation that can target any region of the brain is an open problem in engineering and neuroscience with serious implications for the treatment of numerous neurological diseases. Despite significant recent progress in advancing new methods of neuromodulation, none has successfully replicated the efficacy of traditional wired stimulation and improved on its downsides without introducing new complications. Due to the capability to convert magnetic fields into local electric fields, MagnetoElectric NanoParticle (MENP) neuromodulation is a recently proposed framework based on new materials that can locally sensitize neurons to specific, low-strength alternating current (AC) magnetic fields (50Hz 1.7 kOe field). However, the current research into this neuromodulation concept is at a very early stage, and the theoretically feasible game-changing advantages remain to be proven experimentally. To break this stalemate phase, this study leveraged understanding of the non-linear properties of MENPs and the nanoparticles' field interaction with the cellular microenvironment. Particularly, the applied magnetic field's strength and frequency were tailored to the M - H hysteresis loop of the nanoparticles. Furthermore, rectangular prisms instead of the more traditional "spherical" nanoparticle shapes were used to: (i) maximize the magnetoelectric effect and (ii) improve the nanoparticle-cell-membrane surface interface. Neuromodulation performance was evaluated in a series of exploratory in vitro experiments on 2446 rat hippocampus neurons. Linear mixed effect models were used to ensure the independence of samples by accounting for fixed adjacency effects in synchronized firing. Neural activity was measured over repeated 4-min segments, containing 90 s of baseline measurements, 90 s of stimulation measurements, and 60 s of post stimulation measurements. 87.5 % of stimulation attempts produced statistically significant (P < 0.05) changes in neural activity, with 58.3 % producing large changes (P < 0.01). In negative controls using either zero or 1.7 kOe-strength field without nanoparticles, no experiments produced significant changes in neural activity (P > 0.05 and P > 0.15 respectively). Furthermore, an exploratory analysis of a direct current (DC) magnetic field indicated that the DC field could be used with MENPs to inhibit neuron activity (P < 0.01). These experiments demonstrated the potential for magnetoelectric neuromodulation to offer a near one-to-one functionality match with conventional electrode stimulation without requiring surgical intervention or genetic modification to achieve success, instead relying on physical properties of these nanoparticles as "On/Off" control mechanisms. ONE-SENTENCE SUMMARY: This in vitro neural cell culture study explores how to exploit the non-linear and anisotropic properties of magnetoelectric nanoparticles for wireless neuromodulation, the importance of magnetic field strength and frequency matching for optimization, and demonstrates, for the first time, that magnetoelectric neuromodulation can inhibit neural responses.

摘要

非侵入性或微创且无线的大脑刺激可以靶向大脑的任何区域,这是工程学和神经科学中的一个开放性问题,对许多神经疾病的治疗有严重影响。尽管在推进新的神经调节方法方面取得了重大进展,但没有一种方法成功复制了传统有线刺激的疗效,并在不引入新并发症的情况下改善了其缺点。由于能够将磁场转换为局部电场,因此基于新材料的磁电纳米粒子(MENP)神经调节是一种最近提出的框架,可以使神经元对特定的、低强度的交流电(AC)磁场(50Hz 1.7kOe 磁场)产生局部敏感性。然而,目前对这种神经调节概念的研究还处于早期阶段,理论上可行的改变游戏规则的优势仍有待实验证明。为了打破这种僵持局面,本研究利用了对 MENP 的非线性特性以及纳米颗粒与细胞微环境的场相互作用的理解。特别是,施加的磁场强度和频率根据纳米颗粒的 M-H 磁滞回线进行了调整。此外,使用了矩形棱柱而不是更传统的“球形”纳米颗粒形状,以:(i)最大化磁电效应,和(ii)改善纳米颗粒-细胞膜表面界面。在对 2446 个大鼠海马神经元进行的一系列探索性体外实验中评估了神经调节性能。使用线性混合效应模型通过考虑同步发射中的固定相邻效应来确保样本的独立性。神经活动在重复的 4 分钟片段中进行测量,其中包含 90 秒的基线测量、90 秒的刺激测量和 60 秒的刺激后测量。87.5%的刺激尝试产生了统计学上显著的(P<0.05)神经活动变化,其中 58.3%产生了较大的变化(P<0.01)。在使用零或 1.7kOe 强度磁场且没有纳米颗粒的阴性对照实验中,没有实验产生显著的神经活动变化(分别为 P>0.05 和 P>0.15)。此外,对直流(DC)磁场的探索性分析表明,MENP 可与 DC 磁场一起用于抑制神经元活动(P<0.01)。这些实验证明了磁电神经调节具有提供与传统电极刺激近乎一对一功能匹配的潜力,而无需手术干预或基因修饰即可成功实现,而是依赖于这些纳米颗粒的物理特性作为“开/关”控制机制。一句话总结:本体外神经细胞培养研究探讨了如何利用磁电纳米颗粒的非线性和各向异性特性进行无线神经调节,以及磁场强度和频率匹配对优化的重要性,并首次证明磁电神经调节可以抑制神经反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验