Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland.
Proc Biol Sci. 2024 Jan 31;291(2015):20232449. doi: 10.1098/rspb.2023.2449. Epub 2024 Jan 24.
Bacteria are infected by mobile genetic elements like plasmids and virulent phages, and those infections significantly impact bacterial ecology and evolution. Recent discoveries reveal that some plasmids carry anti-phage immune systems like CRISPR-Cas, suggesting that plasmids may participate in the coevolutionary arms race between virulent phages and bacteria. Intuitively, this seems reasonable as virulent phages kill the plasmid's obligate host. However, the efficiency of CRISPR-Cas systems carried by plasmids can be expected to be lower than those carried by the chromosome due to continuous segregation loss, creating susceptible cells for phage amplification. To evaluate the anti-phage protection efficiency of CRISPR-Cas on plasmids, we develop a stochastic model describing the dynamics of a virulent phage infection against which a conjugative plasmid defends using CRISPR-Cas. We show that CRISPR-Cas on plasmids provides robust protection, except in limited parameter sets. In these cases, high segregation loss favours phage outbreaks by generating a population of defenceless cells on which the phage can evolve and escape CRISPR-Cas immunity. We show that the phage's ability to exploit segregation loss depends strongly on the evolvability of both CRISPR-Cas and the phage itself.
细菌会被移动遗传因子(如质粒和毒性噬菌体)感染,这些感染会显著影响细菌的生态和进化。最近的发现表明,一些质粒携带 CRISPR-Cas 等抗噬菌体免疫系统,这表明质粒可能参与了毒性噬菌体和细菌之间的共同进化军备竞赛。直观地说,这似乎是合理的,因为毒性噬菌体杀死了质粒的专性宿主。然而,由于连续的分离丢失,质粒携带的 CRISPR-Cas 系统的效率预计会低于染色体携带的系统,从而为噬菌体的扩增创造了易感细胞。为了评估质粒上 CRISPR-Cas 对噬菌体的保护效率,我们开发了一个随机模型,描述了一种烈性噬菌体感染的动态,该感染受到质粒上的 CRISPR-Cas 防御。我们表明,质粒上的 CRISPR-Cas 提供了强大的保护,除非在有限的参数设置下。在这些情况下,高分离丢失有利于噬菌体爆发,因为它会产生一群没有防御能力的细胞,噬菌体可以在这些细胞上进化并逃避 CRISPR-Cas 免疫。我们表明,噬菌体利用分离丢失的能力强烈依赖于 CRISPR-Cas 和噬菌体本身的可进化性。