Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland.
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200470. doi: 10.1098/rstb.2020.0470. Epub 2021 Nov 29.
Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling. Using , prophage and the multidrug-resistant plasmid RP4 we find that prophages can substantially limit the spread of conjugative plasmids. This inhibitory effect was strongly dependent on environmental conditions and bacterial genetic background. Our empirically parameterized model reproduced experimental dynamics of cells acquiring either the prophage or the plasmid well but could only reproduce the number of cells acquiring both elements by assuming complex interactions between conjugative plasmids and prophages in sequential infections. Varying phage and plasmid infection parameters over empirically realistic ranges revealed that plasmids can overcome the negative impact of prophages through high conjugation rates. Overall, the presence of prophages introduces an additional death rate for plasmid carriers, the magnitude of which is determined in non-trivial ways by the environment, the phage and the plasmid. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
抗生素耐药性通过质粒传播是成功对抗感染的严重威胁,因此了解自然界中质粒的转移对于防止抗生素耐药性的产生至关重要。研究质粒转移的动力学的研究还忽略了一个普遍存在的因素:噬菌体(整合到细菌基因组中的病毒),其激活可以杀死宿主和周围的细菌细胞。为了研究噬菌体对 conjugation 的影响,我们结合了实验和数学建模。使用 、噬菌体 prophage 和多药耐药质粒 RP4,我们发现噬菌体可以显著限制可移动性的传播conjugative 质粒。这种抑制作用强烈依赖于环境条件和细菌遗传背景。我们经验参数化的模型很好地再现了细胞获得噬菌体或质粒的实验动态,但只能通过假设在连续感染中,可移动性的接合质粒和噬菌体之间存在复杂的相互作用来再现同时获得这两种元素的细胞数量。在经验上合理的噬菌体和质粒感染参数范围内变化表明,质粒可以通过高接合率克服噬菌体的负面影响。总的来说,噬菌体的存在为质粒载体引入了一个额外的死亡率,其大小以非平凡的方式由环境、噬菌体和质粒决定。本文是主题为“微生物移动遗传元素的秘密生活”的特刊的一部分。