Suppr超能文献

质粒共感染:将生物学机制与生态和进化动态联系起来。

Plasmid co-infection: linking biological mechanisms to ecological and evolutionary dynamics.

机构信息

Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland.

Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200478. doi: 10.1098/rstb.2020.0478. Epub 2021 Nov 29.

Abstract

As infectious agents of bacteria and vehicles of horizontal gene transfer, plasmids play a key role in bacterial ecology and evolution. Plasmid dynamics are shaped not only by plasmid-host interactions but also by ecological interactions between plasmid variants. These interactions are complex: plasmids can co-infect the same cell and the consequences for the co-resident plasmid can be either beneficial or detrimental. Many of the biological processes that govern plasmid co-infection-from systems that exclude infection by other plasmids to interactions in the regulation of plasmid copy number-are well characterized at a mechanistic level. Modelling plays a central role in translating such mechanistic insights into predictions about plasmid dynamics and the impact of these dynamics on bacterial evolution. Theoretical work in evolutionary epidemiology has shown that formulating models of co-infection is not trivial, as some modelling choices can introduce unintended ecological assumptions. Here, we review how the biological processes that govern co-infection can be represented in a mathematical model, discuss potential modelling pitfalls, and analyse this model to provide general insights into how co-infection impacts ecological and evolutionary outcomes. In particular, we demonstrate how beneficial and detrimental effects of co-infection give rise to frequency-dependent selection on plasmid variants. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.

摘要

作为细菌的感染因子和水平基因转移的载体,质粒在细菌生态和进化中起着关键作用。质粒动力学不仅受到质粒-宿主相互作用的影响,还受到质粒变异体之间生态相互作用的影响。这些相互作用非常复杂:质粒可以共同感染同一细胞,而共同存在的质粒的后果可能是有益的,也可能是有害的。许多控制质粒共同感染的生物学过程——从排斥其他质粒感染的系统到质粒拷贝数调节中的相互作用——在机制水平上都得到了很好的描述。建模在将这些机制上的见解转化为关于质粒动力学及其对细菌进化影响的预测方面发挥着核心作用。进化流行病学的理论工作表明,制定共同感染模型并非微不足道,因为一些建模选择可能会引入意想不到的生态假设。在这里,我们回顾了控制共同感染的生物学过程如何在数学模型中得到表示,讨论了潜在的建模陷阱,并分析了该模型,以提供关于共同感染如何影响生态和进化结果的一般见解。特别是,我们展示了共同感染的有益和有害影响如何导致质粒变异体的频率依赖性选择。本文是“微生物可移动遗传元件的秘密生活”主题专刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb0b/8628072/c415adfa1f7b/rstb20200478f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验