Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
BMC Plant Biol. 2024 Jan 23;24(1):65. doi: 10.1186/s12870-024-04740-2.
Drought and salinity stress have been proposed as the main environmental factors threatening food security, as they adversely affect crops' agricultural productivity. As a potential solution, the application of plant growth regulators to enhance drought and salinity tolerance has gained considerable attention. γ-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that accumulates in plants as a response to stressful conditions. This study focused on a comparative assessment of several machine learning (ML) regression models, including radial basis function, generalized regression neural network (GRNN), random forest (RF), and support vector regression (SVR) to develop predictive models for assessing the effect of different concentrations of GABA (0, 10, 20, and 40 mM) on various physio-biochemical traits during periods of drought, salinity, and combined stress conditions. The physio-biochemical traits included antioxidant enzyme activities (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; and ascorbate peroxidase, APX), protein content, malondialdehyde (MDA) levels, and hydrogen peroxide (HO) levels. The non‑dominated sorting genetic algorithm‑II (NSGA‑II) was employed for optimizing the superior prediction model.
The GRNN model outperformed the other ML algorithms and was therefore selected for optimization by NSGA-II. The GRNN-NSGA-II model revealed that treatment with GABA at concentrations of 20.90 mM and 20.54 mM, under combined drought and salinity stress conditions at 20.86 and 20.72 days post-treatment, respectively, could result in the maximum values for protein content (by 0.80 and 0.69), APX activity (by 50.63 and 51.51), SOD activity (by 0.54 and 0.53), POD activity (by 1.53 and 1.72), CAT activity (by 4.42 and 5.66), as well as lower MDA levels (by 0.12 and 0.15) and HO levels (by 0.44 and 0.55), respectively, in the 'Atabaki' and 'Rabab' cultivars.
This study demonstrates that the GRNN-NSGA-II model, as an advanced ML algorithm with a strong predictive ability for outcomes in combined stressful environmental conditions, provides valuable insights into the significant factors influencing such multifactorial processes.
干旱和盐胁迫被认为是威胁粮食安全的主要环境因素,因为它们会对作物的农业生产力产生不利影响。作为一种潜在的解决方案,应用植物生长调节剂来提高作物的抗旱性和耐盐性受到了广泛关注。γ-氨基丁酸(GABA)是一种四碳非蛋白氨基酸,它在植物中积累作为对胁迫条件的响应。本研究侧重于对几种机器学习(ML)回归模型的比较评估,包括径向基函数、广义回归神经网络(GRNN)、随机森林(RF)和支持向量回归(SVR),以开发预测模型来评估不同浓度的 GABA(0、10、20 和 40 mM)对干旱、盐胁迫和复合胁迫条件下各种生理生化特性的影响。生理生化特性包括抗氧化酶活性(超氧化物歧化酶、SOD;过氧化物酶、POD;过氧化氢酶、CAT;和抗坏血酸过氧化物酶、APX)、蛋白质含量、丙二醛(MDA)水平和过氧化氢(HO)水平。非支配排序遗传算法-II(NSGA-II)被用于优化最优预测模型。
GRNN 模型优于其他 ML 算法,因此被选为 NSGA-II 进行优化。GRNN-NSGA-II 模型表明,在处理后 20.86 和 20.72 天,在复合干旱和盐胁迫条件下,用 20.90 和 20.54 mM 的 GABA 处理,分别可以得到蛋白质含量的最大值(增加 0.80 和 0.69)、APX 活性(增加 50.63 和 51.51)、SOD 活性(增加 0.54 和 0.53)、POD 活性(增加 1.53 和 1.72)、CAT 活性(增加 4.42 和 5.66),以及 MDA 水平(减少 0.12 和 0.15)和 HO 水平(减少 0.44 和 0.55),分别在 'Atabaki' 和 'Rabab' 品种中。
本研究表明,GRNN-NSGA-II 模型作为一种具有强大预测能力的先进 ML 算法,能够对复合胁迫环境条件下的结果进行预测,为理解影响这些多因素过程的关键因素提供了有价值的见解。