Isak Musab A, Bozkurt Taner, Tütüncü Mehmet, Dönmez Dicle, İzgü Tolga, Şimşek Özhan
Department of Agricultural Science and Technology, Graduate School of Natural and Applied Sciences Erciyes University, Kayseri, Türkiye.
Tekfen Agricultural Research Production and Marketing Inc., Adana, Türkiye.
PLoS One. 2024 Jun 13;19(6):e0305111. doi: 10.1371/journal.pone.0305111. eCollection 2024.
This study investigates the influence of cadmium (Cd) stress on the micropropagation of Goji Berry (Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employing an array of machine learning (ML) algorithms, including Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Gaussian Process (GP), and Extreme Gradient Boosting (XGBoost). The primary motivation is to elucidate genotype-specific responses to Cd stress, which poses significant challenges to agricultural productivity and food safety due to its toxicity. By analyzing the impacts of varying Cd concentrations on plant growth parameters such as proliferation, shoot and root lengths, and root numbers, we aim to develop predictive models that can optimize plant growth under adverse conditions. The ML models revealed complex relationships between Cd exposure and plant physiological changes, with MLP and RF models showing remarkable prediction accuracy (R2 values up to 0.98). Our findings contribute to understanding plant responses to heavy metal stress and offer practical applications in mitigating such stress in plants, demonstrating the potential of ML approaches in advancing plant tissue culture research and sustainable agricultural practices.
本研究通过使用一系列机器学习(ML)算法,包括多层感知器(MLP)、支持向量机(SVM)、随机森林(RF)、高斯过程(GP)和极端梯度提升(XGBoost),研究了镉(Cd)胁迫对三种不同基因型(ERU、NQ1、NQ7)枸杞(Lycium barbarum L.)微繁殖的影响。主要目的是阐明基因型对镉胁迫的特异性反应,镉的毒性对农业生产力和食品安全构成了重大挑战。通过分析不同镉浓度对植物生长参数(如增殖、茎长和根长以及根数)的影响,我们旨在建立能够在不利条件下优化植物生长的预测模型。ML模型揭示了镉暴露与植物生理变化之间的复杂关系,MLP和RF模型显示出显著的预测准确性(R2值高达0.98)。我们的研究结果有助于理解植物对重金属胁迫的反应,并为减轻植物中的此类胁迫提供实际应用,证明了ML方法在推进植物组织培养研究和可持续农业实践方面的潜力。