Suppr超能文献

非靶向代谢组学与机器学习相结合预测药用植物(属)中酚类化合物的生物合成

The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Medicinal Plants (Genus ).

作者信息

García-Pérez Pascual, Zhang Leilei, Miras-Moreno Begoña, Lozano-Milo Eva, Landin Mariana, Lucini Luigi, Gallego Pedro P

机构信息

Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain.

CITACA-Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain.

出版信息

Plants (Basel). 2021 Nov 10;10(11):2430. doi: 10.3390/plants10112430.

Abstract

Phenolic compounds constitute an important family of natural bioactive compounds responsible for the medicinal properties attributed to plants (genus , Crassulaceae), but their production by these medicinal plants has not been characterized to date. In this work, a combinatorial approach including plant tissue culture, untargeted metabolomics, and machine learning is proposed to unravel the critical factors behind the biosynthesis of phenolic compounds in these species. The untargeted metabolomics revealed 485 annotated compounds that were produced by three species cultured in vitro in a genotype and organ-dependent manner. Neurofuzzy logic (NFL) predictive models assessed the significant influence of genotypes and organs and identified the key nutrients from culture media formulations involved in phenolic compound biosynthesis. Sulfate played a critical role in tyrosol and lignan biosynthesis, copper in phenolic acid biosynthesis, calcium in stilbene biosynthesis, and magnesium in flavanol biosynthesis. Flavonol and anthocyanin biosynthesis was not significantly affected by mineral components. As a result, a predictive biosynthetic model for all the genotypes was proposed. The combination of untargeted metabolomics with machine learning provided a robust approach to achieve the phytochemical characterization of the previously unexplored species belonging to the subgenus, facilitating their biotechnological exploitation as a promising source of bioactive compounds.

摘要

酚类化合物是一类重要的天然生物活性化合物,它们赋予了景天科植物某些药用特性,但迄今为止,这些药用植物中酚类化合物的产生情况尚未得到表征。在这项工作中,我们提出了一种包括植物组织培养、非靶向代谢组学和机器学习的组合方法,以揭示这些物种中酚类化合物生物合成背后的关键因素。非靶向代谢组学揭示了485种注释化合物,这些化合物由三种体外培养的景天属物种以基因型和器官依赖性方式产生。神经模糊逻辑(NFL)预测模型评估了基因型和器官的显著影响,并确定了参与酚类化合物生物合成的培养基配方中的关键营养成分。硫酸盐在酪醇和木脂素生物合成中起关键作用,铜在酚酸生物合成中起关键作用,钙在芪生物合成中起关键作用,镁在黄烷醇生物合成中起关键作用。黄酮醇和花青素的生物合成不受矿物质成分的显著影响。因此,我们提出了一个针对所有景天属基因型的预测生物合成模型。非靶向代谢组学与机器学习的结合提供了一种强大的方法,可实现对景天亚属中以前未被探索的物种的植物化学表征,促进它们作为有前途的生物活性化合物来源的生物技术开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a86/8620224/e1712b69f34b/plants-10-02430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验