Suppr超能文献

基于智能手机单目视频对肌肉骨骼疾病患者进行无标记3D姿态估计的HGcnMLP方法的有效评估。

Effective evaluation of HGcnMLP method for markerless 3D pose estimation of musculoskeletal diseases patients based on smartphone monocular video.

作者信息

Hu Rui, Diao Yanan, Wang Yingchi, Li Gaoqiang, He Rong, Ning Yunkun, Lou Nan, Li Guanglin, Zhao Guoru

机构信息

CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.

出版信息

Front Bioeng Biotechnol. 2024 Jan 9;11:1335251. doi: 10.3389/fbioe.2023.1335251. eCollection 2023.

Abstract

Markerless pose estimation based on computer vision provides a simpler and cheaper alternative to human motion capture, with great potential for clinical diagnosis and remote rehabilitation assessment. Currently, the markerless 3D pose estimation is mainly based on multi-view technology, while the more promising single-view technology has defects such as low accuracy and reliability, which seriously limits clinical application. This study proposes a high-resolution graph convolutional multilayer perception (HGcnMLP) human 3D pose estimation framework for smartphone monocular videos and estimates 15 healthy adults and 12 patients with musculoskeletal disorders (sarcopenia and osteoarthritis) gait spatiotemporal, knee angle, and center-of-mass (COM) velocity parameters, etc., and compared with the VICON gold standard system. The results show that most of the calculated parameters have excellent reliability (VICON, ICC (2, k): 0.853-0.982; Phone, ICC (2, k): 0.839-0.975) and validity (Pearson r: 0.808-0.978, p0.05). In addition, the proposed system can better evaluate human gait balance ability, and the K-means++ clustering algorithm can successfully distinguish patients into different recovery level groups. This study verifies the potential of a single smartphone video for 3D human pose estimation for rehabilitation auxiliary diagnosis and balance level recognition, and is an effective attempt at the clinical application of emerging computer vision technology. In the future, it is hoped that the corresponding smartphone program will be developed to provide a low-cost, effective, and simple new tool for remote monitoring and rehabilitation assessment of patients.

摘要

基于计算机视觉的无标记姿态估计为人体运动捕捉提供了一种更简单、更廉价的替代方案,在临床诊断和远程康复评估方面具有巨大潜力。目前,无标记3D姿态估计主要基于多视图技术,而更具前景的单视图技术存在精度和可靠性低等缺陷,严重限制了临床应用。本研究针对智能手机单目视频提出了一种高分辨率图卷积多层感知(HGcnMLP)人体3D姿态估计框架,并对15名健康成年人和12名患有肌肉骨骼疾病(肌肉减少症和骨关节炎)的患者的步态时空参数、膝关节角度和质心(COM)速度参数等进行了估计,并与VICON金标准系统进行了比较。结果表明,大多数计算参数具有出色的可靠性(VICON,ICC(2,k):0.853 - 0.982;手机,ICC(2,k):0.839 - 0.975)和有效性(Pearson r:0.808 - 0.978,p<0.05)。此外,所提出的系统能够更好地评估人体步态平衡能力,K均值++聚类算法能够成功地将患者区分到不同的恢复水平组。本研究验证了单个智能手机视频用于3D人体姿态估计以进行康复辅助诊断和平衡水平识别的潜力,是新兴计算机视觉技术临床应用的一次有效尝试。未来,希望开发相应的智能手机程序,为患者的远程监测和康复评估提供一种低成本、有效且简单的新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51dc/10803458/6e2e16994779/fbioe-11-1335251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验