Suppr超能文献

步态期间的无校准单目视觉肌肉骨骼模拟

Calibrationless monocular vision musculoskeletal simulation during gait.

作者信息

Ueno Ryo

机构信息

Department of Research and Development, ORGO, 2-7 Odori W18, Chuo-ku, Sapporo, 061-1136, Japan.

出版信息

Heliyon. 2024 May 31;10(11):e32078. doi: 10.1016/j.heliyon.2024.e32078. eCollection 2024 Jun 15.

Abstract

With computer vision technology and prediction of ground reaction forces (GRF), a previous study performed markerless motion capture and musculoskeletal simulation with two smartphones (OpenCap). A recent approach can reconstruct 3D human motion from a single video without calibration and it may further simplify the motion capture process. However it has not been combined with musculoskeletal simulation and the validity is unclear. Therefore, the purpose of this study was to determine the validity of the musculoskeletal simulation using a monocular vision approach. An open-source dataset that contains motion capture and video data during gait from 10 healthy participants was used. Human motion reconstruction with the skinned human (SMPL) model was performed on each video. Virtual marker data was generated by extracting the position data from the SMPL skin vertices. Inverse kinematics, GRF prediction (only for monocular vision approach), inverse dynamics and static optimization were performed using a musculoskeletal model for experimental motion capture data and the generated virtual markers from videos. Mean absolute errors (MAE) between motion capture based and monocular vision based simulation outcomes were calculated. The MAE were 8.4° for joint angles, 5.0 % bodyweight for GRF, 1.1 % bodyweight*height for joint moments and 0.11 for estimated muscle activations from 16 muscles. The entire MAE was larger but some were comparable to OpenCap. Using the monocular vision approach, motion capture and musculoskeletal simulation can be done with no preparations and is beneficial for clinicians to quantify the daily gait assessment.

摘要

借助计算机视觉技术和地面反作用力(GRF)预测,先前的一项研究使用两部智能手机(OpenCap)进行了无标记运动捕捉和肌肉骨骼模拟。最近的一种方法可以从单个视频中重建3D人体运动,无需校准,这可能会进一步简化运动捕捉过程。然而,它尚未与肌肉骨骼模拟相结合,其有效性尚不清楚。因此,本研究的目的是确定使用单目视觉方法进行肌肉骨骼模拟的有效性。使用了一个开源数据集,该数据集包含10名健康参与者在步态期间的运动捕捉和视频数据。对每个视频进行了带皮肤人体(SMPL)模型的人体运动重建。通过从SMPL皮肤顶点提取位置数据生成虚拟标记数据。使用肌肉骨骼模型对实验运动捕捉数据和从视频生成的虚拟标记进行逆运动学、GRF预测(仅用于单目视觉方法)、逆动力学和静态优化。计算了基于运动捕捉和基于单目视觉的模拟结果之间的平均绝对误差(MAE)。关节角度的MAE为8.4°,GRF为体重的5.0%,关节力矩为体重×身高的1.1%,16块肌肉的估计肌肉激活为0.11。整体MAE更大,但有些与OpenCap相当。使用单目视觉方法,无需准备即可进行运动捕捉和肌肉骨骼模拟,这有利于临床医生对日常步态评估进行量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fa/11168395/4a7f5ad8fb37/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验