Suppr超能文献

使用步态分析和智能鞋垫评估肌肉减少症患者的身体能力,以开发数字生物标志物。

Assessing physical abilities of sarcopenia patients using gait analysis and smart insole for development of digital biomarker.

机构信息

Department of Biomedical Research Institute, Inha University Hospital, Incheon, Republic of Korea.

Department of Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea.

出版信息

Sci Rep. 2023 Jun 30;13(1):10602. doi: 10.1038/s41598-023-37794-7.

Abstract

The aim of this study is to compare variable importance across multiple measurement tools, and to use smart insole and artificial intelligence (AI) gait analysis to create variables that can evaluate the physical abilities of sarcopenia patients. By analyzing and comparing sarcopenia patients with non sarcopenia patients, this study aims to develop predictive and classification models for sarcopenia and discover digital biomarkers. The researchers used smart insole equipment to collect plantar pressure data from 83 patients, and a smart phone to collect video data for pose estimation. A Mann-Whitney U was conducted to compare the sarcopenia group of 23 patients and the control group of 60 patients. Smart insole and pose estimation were used to compare the physical abilities of sarcopenia patients with a control group. Analysis of joint point variables showed significant differences in 12 out of 15 variables, but not in knee mean, ankle range, and hip range. These findings suggest that digital biomarkers can be used to differentiate sarcopenia patients from the normal population with improved accuracy. This study compared musculoskeletal disorder patients to sarcopenia patients using smart insole and pose estimation. Multiple measurement methods are important for accurate sarcopenia diagnosis and digital technology has potential for improving diagnosis and treatment.

摘要

本研究旨在比较多种测量工具的变量重要性,并利用智能鞋垫和人工智能(AI)步态分析来创建可评估肌少症患者身体能力的变量。通过对肌少症患者与非肌少症患者进行分析和比较,本研究旨在开发肌少症的预测和分类模型,并发现数字生物标志物。研究人员使用智能鞋垫设备从 83 名患者中收集足底压力数据,并使用智能手机收集用于姿势估计的视频数据。对 23 名肌少症患者和 60 名对照组患者进行了曼-惠特尼 U 检验。使用智能鞋垫和姿势估计来比较肌少症患者与对照组的身体能力。关节点变量分析显示,在 15 个变量中有 12 个变量存在显著差异,但在膝关节平均值、踝关节范围和髋关节范围方面没有差异。这些发现表明,数字生物标志物可以提高准确性,用于区分肌少症患者和正常人群。本研究使用智能鞋垫和姿势估计比较了肌肉骨骼疾病患者和肌少症患者。多种测量方法对于准确诊断肌少症很重要,数字技术有潜力改善诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/304e/10313812/fe932ce0022b/41598_2023_37794_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验